Module 4: Dictionaries and Balanced Search Trees

CS 240 - Data Structures and Data Management

Jason Hinek and Arne Storjohann
Based on lecture notes by R. Dorrigiv and D. Roche

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2012

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 1/30

Dictionary ADT

A dictionary is a collection of jtems,

each of which contains a key and some data

and is called a key-value pair (KVP).

Keys can be compared and are (typically) unique.

Operations:
e search(k)
o insert(k,v)
o delete(k)
@ optional: join, isEmpty, size, etc.

Examples: symbol table, license plate database

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012

2/30

Elementary Implementations
Common assumptions:
@ Dictionary has n KVPs

@ Each KVP uses constant space
(if not, the “value” could be a pointer)

@ Comparing keys takes constant time

Unordered array or linked list
search ©(n)
insert ©(1)
delete ©(n) (need to search)

Ordered array
search ©(log n)
insert ©(n)
delete ©(n)

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012

3/30

Binary Search Trees (review)

Structure A BST is either empty or contains a KVP,
left child BST, and right child BST.

Ordering Every key k in T.left is less than the root key.

Every key k in T.right is greater than the root key.

Hinek & Storjohann (CS, UW) CS240 - Module 4

Winter 2012

4/30

BST Search and Insert

search(k) Compare k to current node, stop if found,
else recurse on subtree unless it's empty

Example: search(24)

Hinek & Storjohann (CS, UW) CS240 - Module 4

Winter 2012

5 /30

BST Search and Insert

search(k) Compare k to current node, stop if found,
else recurse on subtree unless it's empty

Example: search(24)

Hinek & Storjohann (CS, UW) CS240 - Module 4

Winter 2012

5 /30

BST Search and Insert

search(k) Compare k to current node, stop if found,
else recurse on subtree unless it's empty

Example: search(24)

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 5 /30

BST Search and Insert

search(k) Compare k to current node, stop if found,
else recurse on subtree unless it's empty

Example: search(24)

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 5 /30

BST Search and Insert

search(k) Compare k to current node, stop if found,
else recurse on subtree unless it's empty

insert(k,v) Search for k, then insert (k,v) as new node

Example: insert(24,...)

Hinek & Storjohann (CS, UW) CS240 - Module 4

Winter 2012

5 /30

BST Delete

o If node is a leaf, just delete it.

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 6 /30

BST Delete

o If node is a leaf, just delete it.

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 6 /30

BST Delete

o If node is a leaf, just delete it.

@ If node has one child, move child up

Hinek & Storjohann (CS, UW) CS240 - Module 4

Winter 2012

6/ 30

BST Delete

o If node is a leaf, just delete it.

@ If node has one child, move child up

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 6 /30

BST Delete

o If node is a leaf, just delete it.
@ If node has one child, move child up

o Else, swap with successor or predecessor node and then delete

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 6 /30

BST Delete

o If node is a leaf, just delete it.
@ If node has one child, move child up

o Else, swap with successor or predecessor node and then delete

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 6 /30

BST Delete

o If node is a leaf, just delete it.
@ If node has one child, move child up

o Else, swap with successor or predecessor node and then delete

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 6 /30

Height of a BST

search, insert, delete all have cost ©(h), where
h = height of the tree = max. path length from root to leaf

If n items are inserted one-at-a-time, how big is h?
o Worst-case:

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 7 /30

Height of a BST

search, insert, delete all have cost ©(h), where
h = height of the tree = max. path length from root to leaf

If n items are inserted one-at-a-time, how big is h?
e Worst-case: n—1 = 0(n)

@ Best-case:

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012

7/30

Height of a BST

search, insert, delete all have cost ©(h), where
h = height of the tree = max. path length from root to leaf

If n items are inserted one-at-a-time, how big is h?
e Worst-case: n—1 = 0(n)
@ Best-case: Ig(n+1) — 1 = O(log n)
@ Average-case:

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012

7/30

Height of a BST

search, insert, delete all have cost ©(h), where
h = height of the tree = max. path length from root to leaf

If n items are inserted one-at-a-time, how big is h?
e Worst-case: n—1 = 0(n)
@ Best-case: Ig(n+1) — 1 = O(log n)
@ Average-case: O(log n)
(just like recursion depth in quick-sortI)

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012

7/30

AVL Trees

Introduced by Adel’son-Vel'skil and Landis in 1962,
an AVL Tree is a BST with an additional structural property:
The heights of the left and right subtree differ by at most 1.

(The height of an empty tree is defined to be —1.)

At each non-empty node, we store height(R) — height(L) € {—1,0,1}:
—1 means the tree is left-heavy
0 means the tree is balanced

1 means the tree is right-heavy

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 8 /30

AVL Trees

Introduced by Adel’son-Vel'skil and Landis in 1962,
an AVL Tree is a BST with an additional structural property:
The heights of the left and right subtree differ by at most 1.

(The height of an empty tree is defined to be —1.)

At each non-empty node, we store height(R) — height(L) € {—1,0,1}:
—1 means the tree is left-heavy
0 means the tree is balanced

1 means the tree is right-heavy

@ We could store the actual height, but storing balances
is simpler and more convenient.

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 8 /30

AVL insertion

To perform insert(T, k, v):
e First, insert (k, v) into T using usual BST insertion
@ Then, move up the tree from the new leaf, updating balance factors.
o If the balance factor is —1, 0, or 1, then keep going.

o If the balance factor is -2, then call the fix algorithm
to “rebalance” at that node.

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 9 /30

How to “fix" an unbalanced AVL tree

Goal: change the structure without changing the order

ANANY-NA

Notice that if heights of A, B, C, D differ by at most 1,
then the tree is a proper AVL tree.

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 10 / 30

Right Rotation

This is a right rotation on node z:

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 11 /30

Right Rotation

This is a right rotation on node z:

Note: Only two edges need to be moved, and two balances updated.

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 11 /30

Left Rotation

This is a left rotation on node z:

Again, only two edges need to be moved and two balances updated.

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 12 / 30

Pseudocode for rotations

rotate-right(T)

T: AVL tree

returns rotated AVL tree

1. newroot < T .left

2. T .left < newroot.right
3. newroot.right <~ T

4 return newroot

rotate-left(T)

T: AVL tree

returns rotated AVL tree

1. newroot < T .right

2 T .right < newroot.left
3. newroot.left < T

4 return newroot

Hinek & Storjohann (CS, UW) CS240 - Module 4

Winter 2012

13 / 30

Double Right Rotation

This is a double right rotation on node z:

First, a left rotation on the left subtree (y).

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 14 / 30

Double Right Rotation

This is a double right rotation on node z:

First, a left rotation on the left subtree (y).
Second, a right rotation on the whole tree (z).

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 14 / 30

Double Left Rotation

This is a double left rotation on node z:

Right rotation on right subtree (y),
followed by left rotation on the whole tree (z).

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 15 / 30

Fixing a slightly-unbalanced AVL tree

Idea: Identify one of the previous 4 situations, apply rotations

fix(T)
T: AVL tree with T.balance = +2
returns a balanced AVL tree
1. if T.balance = —2 then
if T.left.balance = 1 then
T.left + rotate-left(T.left)
return rotate-right(T)
else if T.balance = 2 then
if T.right.balance = —1 then
T .right < rotate-right(T .right)
return rotate-left(T)

© N oA WD

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 16 / 30

AVL Tree Operations

search: Just like in BSTs, costs ©(height)

insert: Shown already, total cost ©(height)
fix will be called at most once.

delete: First search, then swap with successor (as with BSTs),
then move up the tree and apply fix (as with insert).

fix may be called ©(height) times.

Total cost is ©(height).

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 17 / 30

AVL tree examples

Example: insert(8)

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 18 / 30

AVL tree examples

Example: insert(8)

Hinek & Storjohann (CS, UW) CS240 - Module 4

AVL tree examples

Example: insert(8)

Hinek & Storjohann (CS, UW) CS240 - Module 4

AVL tree examples

Example: insert(8)

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 18 / 30

AVL tree examples

Example: insert(8)

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 18 / 30

AVL tree examples

Example: delete(22)

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 18 / 30

AVL tree examples

Example: delete(22)

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 18 / 30

AVL tree examples

Example: delete(22)

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 18 / 30

AVL tree examples

Example: delete(22)

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 18 / 30

AVL tree examples

Example: delete(22)

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 18 / 30

Height of an AVL tree

Define N(h) to be the /east number of nodes in a height-h AVL tree.
One subtree must have height at least h — 1, the other at least h — 2:
1+Nh-1)+N(h—-2), h>1

N(h) ={ 1, h=0
0, h=-1

What sequence does this look like?

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 19 / 30

Height of an AVL tree

Define N(h) to be the /east number of nodes in a height-h AVL tree.

One subtree must have height at least h — 1, the other at least h — 2:

1+Nh—1)+Nh—2), h>1
N(h)y={ 1, h=0
0, h=-1

What sequence does this look like? The Fibonacci sequence!

h+3

%) 1—|—\/§
N(h) = Fpi3—1= — 1, where p =
()= Frva-1= | £ 0

2

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012

19 / 30

AVL Tree Analysis

Easier lower bound on N(h):

N(h) > 2N(h—2) > 4N(h—4) > 8N(h—6) > --- > 2'N(h —2/) > 2lh/2]

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 20 / 30

AVL Tree Analysis

Easier lower bound on N(h):

N(h) > 2N(h—2) > 4N(h—4) > 8N(h—6) > --- > 2'N(h —2/) > 2lh/2]

Since n > 221 h < 2Ign,
and an AVL tree with n nodes has height O(log n).
Also, n < 21 — 1, so the height is ©(log n).

= search, insert, delete all cost ©(log n).

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 20 / 30

2-3 Trees

A 2-3 Tree is like a BST with additional structual properties:

@ Every node either contains one KVP and two children,
or two KVPs and three children.

@ All the leaves are at the same level.
(A leaf is a node with empty children.)
Searching through a 1-node is just like in a BST.
For a 2-node, we must examine both keys and follow the appropriate path.

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 21 /30

Insertion in a 2-3 tree

First, we search to find the leaf where the new key belongs.
If the leaf has only 1 KVP, just add the new one to make a 2-node.
Otherwise, order the three keys as a < b < c.

Split the leaf into two 1-nodes, containing a and c,
and (recursively) insert b into the parent along with the new link.

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 22 /30

2-3 Tree Insertion
Example: insert(19)

25|43

EJES

[12] [21]24] [28] [33] [39]42] (48| |56]62]

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 23 /30

2-3 Tree Insertion

Example: insert(19)

25 [43|

EJES

[12] [21]24] [28] [33] [39]42] (48| |56]62]

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 23 /30

2-3 Tree Insertion
Example: insert(19)

43

EJES

[28] [33] [39]42] (48| |56]62]

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 23 /30

2-3 Tree Insertion
Example: insert(19)

25(43

31 36]

[12] [19] [24] [33] [39]42] (48| [56]62]

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 23 /30

2-3 Tree Insertion
Example: insert(41)

25(43

[18]21 3136

[12] [19] [24] [33] [39]42] (48| [56]62]

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 23 /30

2-3 Tree Insertion
Example: insert(41)

25(43

[18]21 3136

] [19] [2] Ed (@] [[e]

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 23 /30

2-3 Tree Insertion
Example: insert(41)

25(43

[18]21

[12] [19] [24] (28| [33] [39] [42] (48| [56]62]

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 23 /30

2-3 Tree Insertion

Example: insert(41)

[16]2

[12| [19] [24] [28] [33] [39] [42] [48] |56]62]

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 23 /30

2-3 Tree Insertion

Example: insert(41)

18]

[12] [19] [24] [28] [33] [39] [42] [48] [56]62]

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 23 /30

Deletion from a 2-3 Tree

As with BSTs and AVL trees, we first swap the KVP with its successor,
so that we always delete from a leaf.

Say we're deleting KVP x from a node V:
o If V is a 2-node, just delete x.

o Elself V has a 2-node immediate sibling U, perform a transfer:
Put the “intermediate” KVP in the parent between V and U into V,
and replace it with the adjacent KVP from U.

@ Otherwise, we merge V' and a 1-node sibling U:
Remove V and (recursively) delete the “intermediate” KVP
from the parent, adding it to U.

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 24 / 30

2-3 Tree Deletion

Example: delete(43)

18]

[12] [19] [24] [28] [33] [39] [42] [48] [56]62]

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 25 / 30

2-3 Tree Deletion

Example: delete(43)

18]

[12] [19] [24] [28] [33] [39] [42]

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 25 / 30

2-3 Tree Deletion

Example: delete(43)

18]

[12| [19] [24] [28] [33] [39] [42]

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 25 / 30

2-3 Tree Deletion

Example: delete(19)

18

B [>4] [28] [33] [39] [42]

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 25 / 30

2-3 Tree Deletion

Example: delete(19)

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 25 / 30

2-3 Tree Deletion

Example: delete(19)

[12] [21]24] (28] [33] [39] [42]

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 25 / 30

2-3 Tree Deletion

Example: delete(42)

[12] [21]24] (28] [33] [39]

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 25 / 30

2-3 Tree Deletion

Example: delete(42)

[12] [21]24] [28] [33]

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 25 / 30

2-3 Tree Deletion

Example: delete(42)

[12] [21]24] [28] [33] [39]41] [51] [62]

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 25 / 30

2-3 Tree Deletion

Example: delete(42)

5]

(28] [33] [39[41] [51] [62]

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 25 / 30

2-3 Tree Deletion

Example: delete(42)

36

31 48756 |

[28| [33] ([39]41] [51] [62]

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 25 / 30

B-Trees

The 2-3 Tree is a specific type of B-tree:

A B-tree of minsize d is a search tree satisfying:

@ Each node contains at most 2d KVPs.
Each non-root node contains at least d KVPs.

@ All the leaves are at the same level.

Some people call this a B-tree of order (2d + 1), or a (d + 1,2d + 1)-tree.
A 2-3 tree has d = 1.

search, insert, delete work just like for 2-3 trees.

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 26 / 30

Height of a B-tree
What is the least number of KVPs in a height-h B-tree?

Level Nodes Node size KVPs
0 1 1 1
1 2 d 2d
2 2(d + 1) d 2d(d + 1)
3 2(d +1)2 d 2d(d + 1)?
h 2(d+1)"1t d 2d(d + 1)1
h—1)
Total: 14+ » 2d(d+1) =2(d +1)" -1
i=0

Therefore height of tree with n nodes is ©((log n)/(log d)).

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 27 / 30

Analysis of B-tree operations

Assume each node stores its KVPs and child-pointers in a dictionary
that supports O(log d) search, insert, and delete.

Then search, insert, and delete work just like for 2-3 trees, and each
require ©(height) node operations.

) log n
Total cost is O (Iogd - (log d)) = O(log n).

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012

28 / 30

Dictionaries in external memory

Tree-based data structures have poor memory locality:
If an operation accesses m nodes, then it must access
m spaced-out memory locations.

Observation: Accessing a single location in external memory
(e.g. hard disk) automatically loads a whole block (or “page”).

In an AVL tree or 2-3 tree, ©(log n) pages are loaded in the worst case.

If d is small enough so a 2d-node fits into a single page,
then a B-tree of minsize d only loads ©((log n)/(log d)) pages.

This can result in a huge savings:
memory access is often the largest time cost in a computation.

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 29 / 30

B-tree variations

Max size 2d + 1: Permitting one additional KVP in each node
allows insert and delete to avoid backtracking via
pre-emptive splitting and pre-emptive merging.

Red-black trees: ldentical to a B-tree with minsize 1 and maxsize 3,
but each 2-node or 3-node is represented by 2 or 3 binary nodes,
and each node holds a “color” value of red or black.

B"-trees: All KVPs are stored at the leaves
(interior nodes just have keys),
and the leaves are linked sequentially.

Hinek & Storjohann (CS, UW) CS240 - Module 4 Winter 2012 30/ 30

	Dictionaries
	Dictionary ADT
	Elementary Implementations

	BSTs
	Binary Search Trees (review)
	BST Search and Insert
	BST Delete
	Height of a BST

	AVL Trees
	AVL Trees
	AVL insertion
	How to ``fix'' an unbalanced AVL tree
	Right Rotation
	Left Rotation
	Pseudocode for rotations
	Double Right Rotation
	Double Left Rotation
	Fixing a slightly-unbalanced AVL tree
	AVL Tree Operations
	AVL tree examples
	Height of an AVL tree
	AVL Tree Analysis

	2-3 Trees
	2-3 Trees
	Insertion in a 2-3 tree
	2-3 Tree Insertion
	Deletion from a 2-3 Tree
	2-3 Tree Deletion

	B-Trees
	B-Trees
	Height of a B-tree
	Analysis of B-tree operations
	Dictionaries in external memory
	B-tree variations

