
Review of 4 comparison-based priority queues:
Binary, Binomial, Fibonacci and Weak heap :

Technical report LUSY-2012/01

Matevž Jekovec, Andrej Brodnik
University of Ljubljana, Faculty of Computer and Information Science,

Tržaška 25, SI-1000 Ljubljana, Slovenia
{matevz.jekovec,andrej.brodnik}@fri.uni-lj.si

Abstract

In this paper we review 4 comparison-based priority queues introduced
prior to year 1993 (binary heap, Binomial heap, Fibonacci heap, Weak
Heap) and analyse their worst-case, average-case and amortized running
times.

Keywords: data structures, priority queues, sorting, binary heap

1 Introduction

Selecting or designing the appropriate data structures and algorithms for your
application is the most important process in software design from the perfor-
mance point of view. In this paper we give a brief overview of 4 comparison-
based priority queues published before 1993: the original binary heap[7], Bi-
nomial heap[6], Fibonacci heap[4] and the Weak-Heap[2]. The review focuses
on the theoretical worst-case, average-case and amortized time complexity of
element comparisons and justifies it by providing necessary implementation de-
tails.

2 Priority queues

Priority queue is a data structure which offers the following basic operations:

• INSERT(h, x) Inserts the element x to the heap h.

• FIND-MIN(h) Returns the minimum element in the heap h.

• DELETE-MIN(h) Removes the minimum element from the heap h.

In practice priority queues were extended with the following operations:

• DELETE(h, x) Deletes the element x from the heap h.

• MERGE(h1, h2) Merges the heap h1 and the heap h2 into a single heap.

• DECREASE-KEY(h, x, v) Decreases the element x’s priority in heap
h to v.

1



1

2 3

17 19

25 100

36 7

Figure 1: Binary min-heap, h = 4.

• LEFT(h, x) Finds the closest element left of x in the heap h.

• RIGHT(h, x) Finds the closest element right of x in the heap h.

• FIND-CLOSEST(h, x) Finds the closest element to x in the heap h.

• FIND-MAX(h) Returns the maximum element in the heap h.

We will describe the basic operation implementations for all reviewed priority
queues and also a subset of extended operations for some of them.

Priority queues are used in algorithms for finding the shortest paths (Dijk-
stra), minimum spanning tree (Kruskal, Primm) or in applications like the task
scheduler in the operating system and when providing Quality of Service on
network switches.

2.1 Binary heap

Binary heap was introduced in 1964 implicitly in the algorithm called ”HeapSort”[7].
In this section we will describe the original data structure and ignore some later
improvements[3].

The binary heap is a binary tree. Binary min-heap introduces heap order
which requires that the node is lesser (or greater in binary max-heap) than both
of its children. Consequently the smallest (largest) element in the binary heap
is the root. Figure 1 shows the binary min-heap. The data structure can be
stored inside the array with no additional space required. The element at index
i has the left child at index i∗2 and the right child at index i∗2+1. The parent
of element i is located at bi/2c.

2



2.1.1 Operations

Before looking at the operations we will define the Heapify(h, i) helper method
first:

1. compare the element i with both of its children,

2. if the smaller (greater in max-heap) child is smaller (greater) than the
element i, swap them,

3. if the elements were swapped recursively call Heapify(h, i/2).

If we know that only a single element might be larger than the parent, we
can simply compare the potentially larger one.

Operation INSERT adds the element to the leaves from left to right and
calls the Heapify method on its parent comparing the new element only. This
method moves the new element like a bubble towards the root until the heap
order is satisfied. This requires at most h comparisons per insert operation
where h is the current height of the heap. DELETE removes the element from
the heap and fills the gap with the last element in the heap (the right-most leaf
in the last level). The Heapify is called on the element, but this time we want
to deepen the element until the heap order is reached. The operation requires
at most comparisons when removing the root. That is 2(h − 1), where h is
the original height of the tree. FIND-MIN simply returns the root element. It
does not require any comparisons and the structure remains intact. MERGE
traverses the smaller heap in a bottom-up manner and inserts each element to
the larger heap. This requires at most mh comparisons, which happens if each
newly inserted element needs to be lifted until the root is reached. Note that
m indicates the number of elements in the smaller heap and h is the height of
the larger heap. DECREASE-KEY (or INCREASE-KEY in max-heap) simply
calls the Heapify method on the element’s parent only comparing the changed
element until the heap order is satisfied. This requires at most h comparisons, if
the new value is smaller (larger) than the original one, because the new element
might only float up. If the new value is larger (smaller), we need to call Heapify
method on the element which in worst case takes 2(h− 1) comparisons. Other
operations are not defined in the initial paper.

2.1.2 HeapSort

We use the binary max-heap for sorting an array of elements. Initially we call
the Heapify method on elements indexed from bn/2c to 1. The root now contains
the largest element. Afterwards we call DELETE-MIN and fill the array from
backwards until the heap is empty. The inline version of the algorithm works
as follows:

1. swap the root element with the last element in the heap,

2. decrease the heap size by 1 (we forget the last element and leave it in the
array),

3



3. recursively call Heapify on the root until the heap order is restored.

4. repeat from step 1 until the heap is empty.

The total time needed for the HeapSort consists of two times: the initial
heapify time to build the heap and the heapify times for the new elements when
removing the root. The initial time to build a heap where h is the current depth
looking bottom-up is described by equation 1.

dlgne∑
h=0

n

2h+1
O(h) = O(n

dlgne∑
h=0

h

2h
) ≤ O(n

∞∑
h=0

h

2h
) = O(n) (1)

This means that heapifying the whole structure takes O(n) time and is faster
than inserting each element manually which would take O(n lg n).

The time to heapify new elements can only be done by deepening the root
until the heap order is restored which takes at most O(lg n) comparisons per
element.

The total time of the HeapSort is therefore O(n) + nO(lg n) = O(n lg n)
worst-case.

2.2 Binomial heap

Binomial heaps were introduced in 1978 by Vuillemin[6]. The main goal was
to speed up the MERGE operation of two heaps (that is O(mlogn) for binary
heaps).

The Binomial heap is a forest of Binomial trees with unique degrees k. Every
Binomial tree comprises of exactly 2k nodes. This gives us at least 1 and at
most dlog2ne trees in the non-empty Binomial heap of n elements. The former
happens, if n is a power of 2 and the latter, if n is a power of 2 minus 1. The
Binomial tree is named after the following statement. Let i be the depth of a
node, then node i has exactly

(
k
i

)
descendants where k is the tree degree. The

root node always has the largest number of children, that is exactly k.
The data structure was initially implemented using 3 arrays: INFO containing

the element’s label, LLINK containing the reference to the left-most child and
RLINK containing the reference to the element’s right sibling.

2.2.1 Operations

Before looking at the MERGE operation of two Binomial heaps, we first define
merging of two Binomial trees. This operation is only defined on trees with
the same degree. If we use the min-heap order, the tree having the larger root
becomes a child of the smaller root element. This way the new Binomial tree
degree is increased by 1. Notice that both the heap order and the Binomial
tree form is preserved. MERGE operation on Binomial heap starts by merging
trees from the lower to higher degree. If a Binomial tree doesn’t exist in the
target Binomial heap, we simply add it. If a Binomial tree already exists in the
target Binomial heap, we call the MERGE operation on the two Binomial trees.

4



3

745

9 6

11

10

1

8
,

00 110000
k 01234567

Figure 2: Binomial heap with 10 elements. It comprises of two Binomial trees
of degrees k = 3 and k = 1. The structure of a single Binomial tree can be
observed on the left: it comprises of two Binomial trees with degree k = 2 (the
green one and the black one with 4 elements each) merged together having the
smaller of the roots as the new root element 3. On top, the array describing the
presence of Binomial trees in the heap.

Recursive merges might occur, if a Binomial tree with the increased degree
overlaps the existing ones. Time complexity of the MERGE operation of two
Binomial heaps is dlogne (the number of Binomial trees) in worst case, where n
is the number of elements in the larger heap. Figure 2 shows a Binomial heap
with 10 elements.

Merging is usually implemented using the array of size dlogne containing the
structure of the heap. The value at index i is 1, if a Binomial tree with degree
i exists in the heap or 0, if such a tree does not exist.

INSERT is implemented by constructing a Binomial heap consisting of a
single element and merging the generated Binomial heap with the existing one.
This takes exactly the same time as the MERGE operation does.

FIND-MIN operation instead of walking through the Binomial trees roots,
simply returns the cached minimum element of the heap. The registry contain-
ing the minimum element needs to be checked on every INSERT, DELETE-MIN
and DECREASE-KEY operation and then updated accordingly. Reading from
this registry requires O(1) time.

DELETE-MIN is defined by removing the minimal root node. By doing this
we brake one Binomial tree of degree k to a set of k Binomial trees with degrees
ranging from 1 to 2k exponentially. We then merge these children with the
original Binomial heap. This takes at most blognc comparisons, where n is the
number of elements before deletion. The worst case happens when n is 2x − 1.

DECREASE-KEY simply lifts the given element inside the Binomial tree
until the heap order rule is satisfied again. This takes at most blognc − 1

5



comparisons.
DELETE is implemented by calling DECREASE-KEY(−∞) and DELETE-

MIN. This takes the sum of time complexities of these operations.

2.3 Fibonacci heap

The Fibonacci heaps were introduced in 1987 by Fredman and Tarjan[4]. The
main motivation was to improve the amortized time of operations, which is a
more realistic time when dealing with a sequence of operations than the average
or worst-case time.

The Fibonacci heap is based on the Binomial heap. It comprises of set of
trees with unique degree k. The trees are initially Binomial trees, but might be
broken by at most one missing child per node.

2.3.1 Operations

The MERGE operation of two trees is the same as of the Binomial trees. We
can link only the same-degree trees together and put the smaller root element
on top. The MERGE operation on two Fibonacci heaps however, is completely
different than the one defined on Binomial heaps. Fibonacci heap uses the lazy
melding. New trees are simply appended to the heap allowing multiple trees of
the same degree. Fibonacci heap requires O(1) time for the MERGE operation.

INSERT operation works similar to the one described in the Binomial heap.
It creates a new heap containing a single element, but then calls the MERGE
operation as described above. This requires O(1) time.

FIND-MIN operation works exactly the same as in the Binomial heap. It
requires O(1) time.

DELETE-MIN works the same as in the Binomial heap. It first removes the
minimum node and then calls the MERGE operation on trees with the same de-
gree. The latter step is called the linking step and should not be mixed with the
lazy melding, which happens in the MERGE operation of the whole Fibonacci
heap. The time complexity of the linking step differs from that in the Binomial
heap. The number of newly added trees when removing the root node is the
same, but the number of existing trees in the heap is no longer logn, but might
be n. This happens when calling DELETE-MIN the first time after n INSERT
operations. Time needed to perform the DELETE-MIN operation is impossible
to calculate because it depends on the sequence of previous operations. It might
take from blognc to n− 1 comparisons.

DELETE operation instead of lifting the node up and removing it as in
the Binomial heap, it removes the node from the heap directly and calls the
MERGE operation of its children with the heap. Note that the linking step is
not executed. To preserve some form of the Binomial trees in the heap when
deleting, the cascading cut is introduced. This rule limits the number of node’s
lost children to at most 1. If more than 1 child is lost, the node itself is removed
from the tree and merged with the heap in the lazy manner. This rule prevents
trees from becoming shallow and spread after a series of DELETE operations

6



on the same tree which would then cause more than logn newly added trees in
DELETE-MIN operation. The adjective ”cascading” origins from the fact that
the cut, because of removing the node, might trigger another cut on the parent
node recursively. Operation DELETE requires O(1) time on average.

DECREASE-KEY operation decreases the element’s value, moves it to its
own tree and calls the MERGE operation with the existing heap. linking step
is not called. However, because the node is removed from the original tree,
cascading cut might be triggered. This operation requires O(1) on average.

2.3.2 Why Fibonacci?

The cascading cut limits every node to lose at most one child before being
re-linked. Let Sk be the minimum possible number of descendants of a node
including the node itself with k children. It turns out that the number of
descendants of the node is at least φk (where φ is the golden ratio constant
1+
√
5

2 ). Let’s look at this more closely: Obviously S0 = 1 and S1 = 2. Because
we always merge together trees with the same k and because of the cascading

cut we can write the following: Sk ≥
k−2∑
i=0

Si + 2 for k ≥ 2. Finally we can write

Sk ≥ Fk+2 ≥ φk where Fk is the k-th Fibonacci number.

2.3.3 The amortized analysis

Tarjan introduced the amortized analysis in 1985[5]. In comparison to the av-
erage or worst-case complexity, the amortized analysis is done on a sequence of
operations. This better reflects the real-world cases and is sometimes easier to
calculate than the average-case time complexity per single operation. Tarjan
explained the amortization using two points of view:

the banker’s view We decide to spend i coins every time when calling the
operation. The operation does not necessarily always need exactly i coins
— sometimes more, sometimes less. The difference is deposited or with-
drawn from the bank. The goal of the analysis is to calculate the minimum
amount of coins i spent every operation call for a sequence of operations
to successfully finish (ie. no negative balance on the bank). i is called the
average amortized time. It turns out that i is larger than the average-case
time complexity of the single operation. The difference is accumulated in
the remaining balance on the bank. We also decide what the coin is used
for — usually for a single comparison or the memory access.

the physicist’s view We select the ”potential” and calculate the difference of
it when calling a sequence of operations. The potential is a data structure
property that influences on the required times for operations to finish
and can be calculated directly in every state of the data structure (you
don’t need to know the history of the data structure). Let’s name a few
examples:

7



• the tree height in splay tree,

• the difference in subtrees’ height in AVL trees,

• the number of trees in the binomial heap,

• the number of black nodes in red-black tree.

The equation 2 describes the behaviour of the potential as described by
Tarjan: the sum of actual average times for the operation equals to the
initial minus the final potential plus the sum of all amortized times per
operation. This is similar to the banker’s view — average ai is the mini-
mum number of coins required for a sequence of operations to successfully
finish.

m∑
i=1

ti =

m∑
i=1

(ai − Φi + Φi−1) = Φ0 − Φm +

m∑
i=1

ai (2)

2.3.4 The amortized analysis of the Fibonacci heap

We will analyse the Fibonacci heap from the physicist’s point of view. The
potential of the Fibonacci heap is the number of the trees p plus two times the
number of marked nodes. The marked nodes are those which lost a single child
during the DELETE or DECREASE-KEY operation. The node is unmarked
when it is removed from the tree.

Let’s observe the potential behaviour: MERGE operation increases the po-
tential by the number of the trees in the second heap. INSERT operation
increases the potential by exactly 1. FIND-MIN operation does not change the
potential. DECREASE-KEY moves the decreased node to its own tree and
increases the potential by exactly 1. DELETE operation adds the removed
node children to their own trees. These are at most lg 2. DELETE-MIN adds
the removed node children to their own trees, but also calls the linking step
which decreases the potential. DELETE-MIN can increase the potential by lg 2
worst-case.

The lazy melding of Fibonacci heap increases the performance of a number
of problems. One would say that the actual number of comparisons is eventually
the same as in the Binomial heap. This is not true — let’s have a sequence of n
INSERT operations and a single DELETE-MIN. Binomial heap requires n− 1
comparisons in worst case for the INSERT operations (when n = x2− 1;x ∈ N)
plus blg nc comparisons for the DELETE-MIN. Fibonacci heap on the other
hand does not require any comparisons for the INSERT operations and then in
DELETE-MIN operation first removes the element and then runs the linking
step requiring a total of n− 2 comparisons.

This is also the case for the Dijkstra’s shortest-path algorithm. The goal is
to find the shortest paths from the initial node to all others in the graph. Let’s
denote n as the number of nodes and m as the number of edges where n <
m < n2. The algorithm requires m DECREASE-KEY and n DELETE-MIN

8



operations. Fibonacci heap implementation of Dijkstra runs in O(n lg n + m)
time, improved from the fastest known to date Johnson’sO(m lgm/n+2 n) bound.

2.4 Weak heap

The weak-heap data structure was first introduced in the technical report[1] and
was originally used for sorting[2]. Weak-heap is defined using these three rules:

• every key in the right subtree of a node is smaller than the key stored in
the node itself (the weak-heap order),

• the root has no left child,

• leaves are only found on the last two levels of the tree (weak-heap is always
balanced).

Note that these rules describe the maximum weak-heap in contrast to the
minimum heap order usually found in the binary heap. We us the maximum
weak-heap because it is more appropriate for inline sorting. Figure 3 illustrates
this structure.

Let us define GParent(i) as the ith parent, if i is the root of the right
subtree or as the parent of the right-most parent, if i is in the outer line of the
left subtree. Figure 3 presents the GParent relation visually. The first weak-
heap rule mentioned above can be interpreted as ”all nodes should be smaller of
their GParent”. We also define GChildren(i) which returns all elements whose
GParent is the node i.

The original implementation of the weak-heap uses the array representation.
Because the weak-heap is built using a breadth-first manner, we can find out
whether a node is in a left or a right subtree by simply checking, if the node’s
index is even or odd. We retrieve the node’s parent by assigning i = bi/2c. This
is useful from the time complexity point of view because we can simply use right
bit-shifting until the right-most bit is 1. Therefore, calculating GParent can be
done in O(1) on modern CPUs and does not require any node comparisons.

Let us also define the max-element-path. This is a path comprised ofGChildren(root)
elements. The max-element-path always contains 2nd largest element in the
weak-heap (the largest element is obviously the root of the weak-heap). An-
other important observation is the location of the 3rd largest element in the
weak-heap. It is located in the max-element-path below the 2nd largest element
or is one of the GChildren(2nd largest element).

2.4.1 Operations

Let us also define a helper function called Merge(i, j). This function swaps the
elements i and j, if i < j and reverses the left/right subtree of i. If j > i, this
function does nothing. Therefore, the order of the elements i and j is important!
Reversing the smaller node subtrees is necessary in order to preserve the weak-
heap order. Note that the initial requirement for the Merge is that the jth left
subtree is smaller than i. Figure 4 presents this operation.

9



10

16

15 8

14 13

12 4 6 5

9 2

7

GParent(8)=GParent(9)=GParent(7)=10

0

1

2 3

4 5 6 7

8 9 10 11 12

Figure 3: The weak-heap. Node array indices are written in the top-left corner
of a node. Node 10 is GParent of nodes 8, 9, 7.

c d

j
=+

a b

i
i<j:
b<i
d<j

cd

i

a b

j
c<i
b<j

Figure 4: The weak-heap Merge(i, j) operation.

10



The operation INSERT adds the element i to the weak-heap as a new leaf and
recursively calls Merge(GParent(i), i) until the larger GParent is encountered.
This ”heapifies” the newly added element and preserves the weak-heap order.
Time complexity depends on the implementation and the measurement unit. If
we use the array implementation and count the number of element comparisons,
we require from 1 (new element is the left-most node in the weak-heap) to at
most log(n)− 1 comparisons (new element is the largest inserted and the right-
most node in the weak-heap).

The operation FIND-MAX simply returns the weak-heap root element. This
operation requires 0 comparisons. Another important observation is the location
of the 2nd largest element in the weak-heap. It is one of the nodes having the
root element for their GParent. There are exactly dlogne of those.

The operation DELETE-MAX works as the following:

1. remove the root element (the maximum element) and replace it with a
dummy element with value −∞,

2. call Merge(−∞, x) where x is the 2nd largest element in the weak-heap,

3. continue using the left subtrees (x = 2x) and recursively callMerge(−∞, i)
until the leaf is reached,

4. remove the −∞ element.

When recursively calling the Merge function in the 3rd step, we must never
forget to reverse the left/right subtree. This ensures the weak-heap order invari-
ance. DELETE-MAX operation requires from blognc (logn to find the largest
element in max − element − path and 0 for filling the gap, if the next largest
element is the bottom one) to d2logne comparisons (logn to find the largest el-
ement in max− element− path and another logn to fill all the gaps recursively
until we reached the bottom of the max− element− path).

2.4.2 The weak-heap sort

If we represent the data in the weak-heap using the breadth first manner, sorting
is done in the following steps:

1. weak-heapify the whole data set by calling Merge(GParent(i), i) for each
i = n− 1..1,

2. remove the root and write it at position n. Our weak-heap gets a shape
of an ordinary binary tree,

3. call MergeForest(i) for each i = n− 1..2.

The resulting sorted array of elements is located at 1..n (data set gets shifted
for 1 element to the right).

The weak-heapify operation takes exactly n−1 comparisons. In comparison
to the weak-heapify of the newly inserted node described in the previous section

11



(and the similar behavior noticed in the binary heap), we can only call Merge
once per element because the larger element will eventually reach the root and
the smallest elements can be anywhere in the heap as long as we satisfy the
weak − heaporder.

Function MergeForest(i) calls Merge(i, j) for each j on the max-element-
path going bottom-up. Eventually the largest element appears at the original
index i and the max-element-path is changed in the way that it contains the new
largest element for the next step. Let us investigate this further. The element i
is swapped with one of the j elements, if the current value at i is smaller than
the one at j. This means that the new j gets smaller and we cannot assure
that the elements in the right subtree are smaller anymore. To resolve this,
we complete the Merge procedure and we reverse the left/right subtree. We
can do this, because we know that the elements in the former left tree are all
smaller than our new element j (if it were not so, the j element would have
been swapped before). And for the former right tree, we know nothing about
their relation to our new j, so we must move them to jth left subtree to assure
the weak-heap order.

We would like to stress out another observation. By reversing the subtrees
in the MergeForest step, we also changed the max-element-path for the next
step. We would like to prove that the new path really contains the next largest
element. One might argue that when we reversed the jth element subtrees,
we lost potentially largest elements for the next step located in jth former left
subtree. This is not true, because the jth element was the largest one in that
moment, which means that j itself is already the largest element candidate for
the next step. What if we lost potential elements for the two steps ahead? If
that were correct, we would reverse the subtree back again in the next step
anyway, because the 3rd largest element can only be present in the 2nd largest
element right subtree in that case.

The worst case of the MergeForest operation requires n
2 logn comparisons

on the last level, n
4 (logn− 1) on the pre-last level, n

8 (logn− 2) on another level
etc. This gives us exactly (n−1)logn−0.913987n+1 comparisons for the whole
weak-heap.

Finally, if we sum the number weak-heapify and the MergeForest compar-
isons the weak-heap sort requires at most (n− 1)logn+ 0.086013n comparisons
which is better than other comparison-based heap sorts. Empirical results show
that the average number of comparisons is (n− 0.5)logn− 0.413n which is bet-
ter than the Bottom-Up heapsort from [referenca!], MDRS[referenca!] and even
QuickSort [referenca!] when n > 500.

2.4.3 Speeding up the Merge operation

In this section we would like to introduce another important detail concerning
the weak-heap sort implementation in order to reach the above mentioned times.
In the previous section we often used the reversal of the subtrees. But if the
elements are stored in the array, this operation takes 2k swaps, where k is the
height of the node. To avoid this we add another reverse bit to each node, so

12



10

16

8 15

9 2

3 6 1 7

13 14

5

0

1

2 3

4 5 6 7

8 9 10 11 12

11
13

12
14

4
15

10

16

815

9 2

3 6 17

1314

5

0

1

23

4 567

8 9 101112

11
13

12
14

4
15

max-element-path

Figure 5: Left side: Weak-heap represented in memory. Reversed nodes are
punctuated. max − element − path is shaded. Right side: Interpreted weak-
heap.

when we reverse the node, we simply negate this bit.
Two changes are required in the GParent and max − element − path pro-

cedures. For the GParent, before checking, if the current node index i is even
or odd, we simply add the reverse bit to the index i. This also affects the
interpretation of the weak-heap order. For the nodes with reverse set to 1, all
elements in the left subtree should be smaller than the node i (instead of the
right subtree). Redefining GParent also redefines the max − element − path.
Figure 5 shows the actual weak-heapified array of random numbers from 1..16
in the memory and the interpreted weak-heap on the right.

3 Conclusion

Table 1 shows the time complexities for described operations in the previous
chapters. Fibonacci heap with its lazy melding and cascading cut is the best
general-purpose comparison-based heap. It achieves the best amortized perfor-
mance in comparison to the binary heap or the binomial heap.

Procedure
Binary heap
(worst-case)

Binomial heap
(worst-case)

Fibonacci heap
(amortized)

INSERT Θ(logn) O(logn) Θ(1)
FIND-MIN Θ(1) Θ(1) Θ(1)
DELETE-MIN Θ(logn) Θ(logn) O(logn)
MERGE Θ(n) O(logn) O(1)
DECREASE-KEY Θ(logn) Θ(logn) Θ(1)
DELETE Θ(logn) Θ(logn) O(logn)

Table 1: Running time for operations on three implementations of mergeable
heaps. The number of items in the heaps at the time of an operation is denoted
by n.

13



Weak heap on the other hand is specialized on fast inline sorting and is the
fastest comparison-based heapsort to date.

References

[1] Dutton, R. The weak-heap data structure. Tech. rep., University of Cen-
tral Florida, Orlando, FL 32816, 1992.

[2] Dutton, R. Weak-heap sort. BIT Numerical Mathematics 33, December
1992 (1993), 372–381.

[3] Floyd, R. Algorithm 245: Treesort. Communications of the ACM 7, 12
(1964), 701.

[4] Fredman, M. L., and Tarjan, R. E. Fibonacci heaps and their uses in
improved network optimization algorithms. Journal of the ACM 34, 3 (July
1987), 596–615.

[5] Tarjan, R. Amortized computational complexity. SIAM Journal on Alge-
braic and Discrete Methods 6, 2 (1985), 306–318.

[6] Vuillemin, J. A data structure for manipulating priority queues. Commu-
nications of the ACM 21, 4 (Apr. 1978), 309–315.

[7] Williams, J. Algorithm 232: heapsort. Communications of the ACM 7, 6
(1964), 347–348.

14


	Introduction
	Priority queues
	Binary heap
	Operations
	HeapSort

	Binomial heap
	Operations

	Fibonacci heap
	Operations
	Why Fibonacci?
	The amortized analysis
	The amortized analysis of the Fibonacci heap

	Weak heap
	Operations
	The weak-heap sort
	Speeding up the Merge operation


	Conclusion

