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Abstract

In this survey we review the most significant sequential and their
counterpart parallel models of computation. The sequential models are
Comparison model, Sequential register machine (Counter, Pointer, RAM
and RASP machines), Cell-Probe models (Trans-Dichotomous and Word
RAM), Hierarchical Memory (Hierarchical Memory Model, HMM with
Block transfer, External Memory and Universal Memory Hiererchy model)
and a Cache-Oblivious model. Reviewed parallel models of computation
models are the PRAM-based (MPC, LPRAM, BPRAM, Asynchronous
versions of PRAM — APRAM, Asynchronous PRAM and XPRAM; and
Queud Read Queued Write PRAM), Bulk Synchronous Process, LogP
and Multi-level BSP models, Parallel Memory Hierarchy models (Parallel
External Memory and Multicore Cache model) and the Parallel Cache-
Oblivious model along with the space-bounded scheduler. Finally we de-
scribe a Vector RAM model and the K-model which captures specifics of
the vector stream multiprocessors and the memory organisation found in
the modern GPUs.

Keywords: theoretical computing, models of computation, parallel computa-
tion, high performance computing

1 Introduction

Modelling is used to capture important characteristics of complex phenomena.
When defining a new model we always choose between the clarity and simplicity
on one hand and the degree of accuracy and realism on the other.

There are three types of models used in computer science and engineering
[39]: a model of computation, a programming model and a hardware model.
The model of computation defines an

• execution engine powerful enough to produce a solution to the relevant
class of problems and

• captures computing characteristics of practical computing platforms.
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Figure 1: The map of models of computations covered by this paper. Sequential
models are on the right and parallel models on the left.

The model of computation can alternatively be called an abstract machine
model, a cost model or a performance model.

The programming model provides the semantic of programming abstraction
which serves as a basis for the programming language. A primary goal is to
allow reasoning about program meaning and correctness.

Architectural or hardware model is used for specific language implementation
and most notably for the high performance machine design purpose.

The goal of this survey is to cover the most significant models of computation
to date. Two effects influenced on the development of the models of compu-
tation through time. Computer engineers designed new architectures to solve
industry problems of that time which also needed a new or adapted model of
computation. Or a new model of computation was designed to effectively solve
a problem from the theoretical point of view. Engineers designed a real architec-
ture afterwards, if the solution turned out to be feasible. Nevertheless the aim
of both approaches was to optimize or design new algorithms, data structures
and underlying architectures to find solutions to yet unsolved problems or to
optimize existing solutions.

Figure 1 illustrates the models of computation covered by this survey. On
the right hand side are the sequential and on the left hand the parallel models
of computation. Both sequential and their parallel counterparts taking similar
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characteristics into account are painted the same color. The most abstract
ones are located on top and the most realistic ones on the bottom. Models
are dated similarly — the older ones are on top and the newer ones on the
bottom. Basically there are three generations of models of computation: the
first generation developed since 1978 consists of the shared memory models,
the second generation developed since 1984 consists of the distributed memory
models and finally, the third generation consists of the hierarchical memory
parallel computational model.

This paper’s structure resembles the figure 1. We first describe the sequen-
tial models of computation from the most abstract to the most realistic ones.
We begin with the comparison model which does not take into account neither
the CPU instructions nor the memory bottlenecks. The second family — the
sequential register machine — is a Turing-equivalent family of models and as-
sume a predefined set of instructions but doesn’t know anything about how the
data is stored. The cell-probe family of models assume data to be stored in
a memory of addressable words. This allows calculation of memory addresses
according to the contents. Slow memory access times were always the bottle-
neck for computer engineers. The next family models the multi-level memory
hierarchy present in any modern computer architecture. The final model is the
cache-oblivious model which builds on assumption that, if there is an optimal
cache complexity behaviour between two levels of memory hierarchy, there is
an optimal cache complexity throughout all the hierarchy. The model assures
optimal usage of memory cache independent of the parameters like the cache
size, block size or the hierarchy depth.

The second part of the document describes the parallel models. We begin
with the Parallel RAM and describe its variations like splitting memory into
modules, introducing local private memory per processing element, using block
transfers, asynchronous communication for larger systems and queued reading
and writing. We then introduce a family of models based on the communication
complexity and message passing — the Bulk Synchronous Process. In compar-
ison to PRAM, these models also consider the latency, network bandwidth and
synchronisation period between processing units. Afterwards follows the family
of models taking the memory hierarchy when multiple processing elements into
account, each with its own private memory on the first level. Finally the most
realistic model to date — the parallel cache-oblivious model — is introduced.
This model also requires the introduction of the space-bounded schedulers be-
cause the general recursive assumption of the optimal cache usage throughout
the memory hierarchy does not hold anymore as was the case for the sequential
cache-oblivious model.

Finally we describe the Vector RAM model which evaluates the behaviour
of both SISD or SIMD vector computers and the K-model for designing and
evaluating algorithms running on modern Graphic Processing Units (GPUs).
Vector computers execute instructions which operate on a vector of memory
words in comparison to only operating with scalar values. Stream multiproces-
sors on modern GPUs are a kind of vector computers. Furthermore, a two-level
memory hierarchy and a separate global memory is also an integral part of
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these architectures. K-model captures these specifics. GPUs with their support
for executing arbitrary programs (also known as the General Purpose GPU –
GPGPU) are important in high performance computing because they offer much
higher memory throughput than traditional multi-core systems.

2 Sequential models of computation

Sequential models of computation assume a single processing element (PE) ex-
ecuting the algorithm sequentially in steps. Depending on the model, data can
be stored in the unbounded number of registers (also called the memory) or
implicitly inside graph nodes. We denote the problem size as n.

2.1 Comparison model

The comparison model is an abstract model of computation which doesn’t define
the CPU instruction set neither does it assume how the data are stored and their
access time.

The comparison model originates from the comparison-based sorting algo-
rithms where they measured how many times the numbers were “compared” to
each other. The binary search is a technique for finding the correct item inside
an ordered array questioning “Is the required item larger or smaller than the
element I’m currently pointing at?”. The following step — searching the right
or the left hand side of the array from the pointing element — depends on the
answer to that question. This technique needs Ω(lg n) steps to find the desired
element among n elements, if all the elements are unique. The binary search
defines the lower bound for all comparison-based sorting algorithms: In order
to find the correct permutation vector of numbers among n! permutations we
need Ω(lg n!) = Ω(n lg n) comparisons using a binary search.

The comparison model measures the time complexity of the algorithm. The
overall running time is the number of executed steps or lines of code. Each step
i is executed in a constant time ti. To measure the total running time of the
algorithm we need to unfold the loops and count the number of steps in total
t =

∑
i

ti. The only parameter is the problem size n and the resulting time

complexity is a function of n.

2.2 Sequential register machine

Sequential register machine is formally defined as a machine having a finite
number of uniquely addressable registers r1, r2... and a single processing unit.
Each register can hold a single integer of a finite size resembling of register sizes
of physical computers. We should stress out that having register sizes small is
an important assumption. If we assume that register sizes are arbitrarily big,
the entire problem could be encoded into a single register which results in a
computer able to solve PSPACE-complete problems in polynomial time [12].
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From the computing power point of view, the pointer machine, RAM and
RASP are equivalent to the Turing machine. However, at least two counter
machines are equivalent to the Turing machine. The sequential register machine,
in comparison to other Turing equivalents like the lambda calculus or a universal
Turing machine, better resembles the nowadays computer architectures.

2.2.1 Counter Machine

A general counter machine consists of a set of registers or accumulators and of
the increase and conditional jump instructions. Depending on the counter ma-
chine implementation [41, 44, 36] it assumes a subset of the following instruction
set:

CLR(r) Clear register r. (Set r to zero.)

INC(r) Increment the contents of register r.

DEC(r) Decrement the contents of register r.

CPY(rj, rk) Copy the contents of register rj to register rk leaving the contents
of rj intact.

JZ(r,z) If register r contains Zero THEN Jump to instruction z else continue
in sequence.

JE(rj, rk, z) If the contents of register rj Equals the contents of register rk
then Jump to instruction z else continue in sequence.

HALT Halts the machine. Computation is finished.

At least two counter machines are needed to simulate the Turing machine.
Counter machine does not support executing a stored program from the memory,
but behaves as a finite state machine.

Time complexity is measured by counting the number of instructions ex-
ecuted during the program execution. Execution of any instruction lasts for
the same period of time. The number of used registers determines the space
complexity which is always constant regardless of the program input.

2.2.2 Pointer Machine

We will present the pointer machine model [11] based on the Schönhage’s Storage
Modification Machine directed-graph representation [43]. Every node represents
a stored word (register) and every edge a pointer. The pointer machine offers
three operations:

NEW(w) creates a new node representing word w by following necessary edges.

SET(w,v) moves the last edge of the word w to the last edge of v.

IF v = w THEN z if word w equals v then jump to word node z. Else con-
tinue.
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The pointer machine is mostly interesting from the theoretical point of view
because it cannot do any arithmetic but only reading, modifying and doing
various tests on its storage.

Time complexity is measured by counting the number of hops during the
program execution. Uniform access to any node is assumed. Space complexity
is measured by counting the maximum number of nodes in the graph. All
the nodes are of equal size. The pointer machine does not support indirect
addressing — making decisions based on the followed path.

2.2.3 Random Access Machine — RAM

The Random Access Machine model or RAM [22] is a multiple-register counting
machine with added support for indirect addressing. This is achieved by adding
so called indirect instructions specifying the register’s address not only as a
direct address in the instruction itself but indirectly as the address stored in
another register. Consequently a fixed program is able to access an unbounded
number of registers depending on the program input. A scheme of the RAM
can be seen in figure 2.

Location
counter

Program

(Accumulator)

Memory

r0

r1

r2

r3

.

.

.

y0 y1 y2 y3 ...

Output tape
(write-only)

x0 x1 x2 ...

Input tape
(read-only)

xn

Figure 2: A random access machine.

RAM supports the same instructions as the counter machine, but adds the
memory access ones:

Memory access: LOAD, STORE
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Arithmetic operations: ADD, SUB, MULT, DIV

I/O operations: READ, WRITE

Flow control: JUMP, JGTZ, JZERO, HALT

The program is stored inside a machine in a finite-state-automate manner
and cannot be changed during the execution.

The time and space complexity are measured using the uniform cost criterion
or the logarithmic one [6]. The uniform cost assumes registers large enough to
fit any integer result in the program. This results in constant time and space
complexity for a single instruction.

The logarithmic cost assumes registers to be lg i big, where i is the operand.
Logarithmic time complexity is based on a crude assumption that the cost per-
forming an instruction is proportional to the length of the operands of the
instructions. Time needed to execute a single instruction is therefore lg i where
i is the operand. Similarly the space needed to store the result i of a single
instruction is lg i.

In comparison to counter machines, the uniform time complexity in RAM
is the same as the time complexity of the algorithm in counter machines. We
simply count the number of executed instructions. The space complexity on
the other hand was constant in counter machines because the set of registers
was predefined. In RAM the space complexity depends on the program input.
Logarithmic cost criterion was not used in counter machines.

2.2.4 Random Access Stored Program machine — RASP

The Random Access Stored Program machine or RASP [32] is similar to the
RAM model but has its program in its registers along with its input. This results
in ability for the program to change itself during its execution. Instructions in
RASP are the same as in RAM except for indirect addressing ones which are
not needed any more.

From the complexity analysis point of view ability for the program to change
its execution code allows transformation of indirect register addresses to direct
ones thus increasing the instruction execution speed. It was shown that RAM
and RASP models are equivalent within a constant factor.

On a side note, RASP might resemble more to the von Neumann architecture
because of the exclusive instruction/data memory accesses. RAM on the other
hand resembles to the Harvard architecture accessing both instructions and data
memory simultaneously.

2.3 Cell-probe model

The cell-probe model of computation was introduced by Yao [51]. The author
investigated the lower time bounds of contains() operation, i.e. if an element
with the given key is in a table or not, yet using a minimal storage space. We
know that the binary search operation on a sorted array has a lower bound of
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dlg ne comparisons in worst case when using a comparison-based model. Yao
managed to overcome this lower bound by exposing the full power of address-
computation on RAM using different encodings.

Cell-probe model besides the problem size n also defines a word (a cell) of
length w-bits and a universal set of possible element keys U = 0, 1..., 2w−1. By
carefully designing an off-line algorithm for storing the elements to a table based
on their content and not solely on the relation to other elements, Yao achieved
much less probes than the original binary search on a sorted table. For extreme
cases where |U | ≈ n and |U | ≥ 216n

2

he achieved constant two probes in worst
case. More generally his results show that using binary search method for large
|U | is optimal in comparison-model only, but far from optimal on RAM.

Cell-probe findings are closely related to the integer sorting algorithms like
the counting or radix sort. Similarly, these algorithms resemble to the work
done in post offices where they sort n envelopes by not comparing them to each
other, but putting them directly into U buckets, one for each district, all in
linear time.

Time complexity analysis of algorithms in cell-probe model measures the
number of probes to the memory words (reads or writes). It is a function of
n and |U |. Space complexity is measured the same way as in RAM. Because
the model assumes arbitrary word size, it is mostly used for determining the
theoretical lower bounds of the problem.

2.3.1 Transdichotomous model

Transdichotomous model [27] bridges the real computer world comprising of
registers of the given size with the problem domain of size n. It assumes that in
order to address the input data, we need at least lg n bits. On the other hand,
if we want to do address-computation as in the cell-probe model, we want to
store data addresses into a single word. Therefore, the word size w should be:

w ≥ lg n

which is a realistic assumption for majority of the real world problems.
Authors presented a data structure for predecessor queries called fusion tree.

By compressing the actual element keys, they managed to reduce the required
key size to fit into a single word of a feasible size. Taking the word size into
account results in a much more realistic model of computation, however opera-
tions in comparison to RAM are not limited to a single word but can operate
on multiple words simultaneously.

Time and space complexity measures are similar as in the cell-probe model.
Besides n and |U |, the word size w is introduced.

2.3.2 Word RAM

Transdichotomous model allows you to operate on a finite number of words in
constant time. Word RAM [31] on the other hand supports the C-like operations
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on a single word in constant time and is much closer to the real computer
architectures:

Integer arithmetic: +,−, ∗, /,%, <,>;

Bitwise operations: AND, OR, XOR, NEG;

Bit shifting: <<,>>;

Dereferencing (indirect addressing): [ ].

Word RAM has become a standard RAM model when designing and as-
sessing algorithms when not taking memory hierarchy and concurrency into
account.

2.4 Hierarchical Memory

While the Sequential register machine variants consider execution time of in-
structions in CPU as the basis for analysing and designing algorithms, on real
computers the memory access time represents the bottleneck. This was a con-
sequence of the rapid development of CPU and memory chips on one hand
and slower increases in bus throughputs. Memory hierarchy is a well known
technique in computer engineering to overcome this issue by introducing addi-
tional memory layers between the CPU registers and the main memory. Access
times to these layers are smaller than of the main memory, but their size is also
smaller.

Modelling the multi-level memory hierarchy is essential for describing mod-
ern computer characteristics. Such models instead of having a uniform memory
access times for any memory location, they catch characteristics of the tem-
poral locality of memory access times using the least recently used (LRU ) or
FIFO strategy. Since it has been shown in [45] that LRU and FIFO exchange
strategies are at most for a constant factor slower than the optimal replacement
strategy for twice the cache size, these are viable choices.

2.4.1 Hierarchical Memory Model — HMM

HMM [1] describes a set of registers R1, R2..., Ri, ... with nonuniform access
time dlog ie (see). The memory hierarchy layers can be viewed as increasing
exponentially in size:

• 1 location taking 0 time units to access (CPU registers),

• 1 location taking 1 time units to access (level 0),

• 2 locations taking 2 time units to access (level 1),

• 4 locations taking 3 time units to access (level 2),

• ...
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CPU L1

Size:

L2 L3 L4 ... Li

1 1 2 4 2i

1 1 1 iAccess times:

Figure 3: Hierarchical Memory Model. Memory size is growing exponentially,
access times between each level is constant.

• 2i locations taking i+ 1 time units to access (level i).

From the design and analysis point of view, the model supports the same
instructions as RAM but counts RAM accesses in the nonuniform way. Authors
analysed existing algorithms for semiring matrix multiplication, FFT, sorting,
binary search and achieved slowdowns from Θ(1) to Θ(log n) in worst case.

2.4.2 HMM with Block Transfer — BT

Hierarchical Memory model with Block Transfer [2] outlines the memory the
same way as HMM with the following additions:

• Cost for memory access x is arbitrary f(x).

• Support for copying interval of memory words. The cost for copying x−
δ...x to y − δ...y is f(max(x, y)) + δ.

Authors analysed the same algorithms as in HMM and obtained slowdowns
of O(f(x)) in general. Having algorithm complexity dependent on f(x) is the
main concern of using BT for algorithm analysis and design in practice.

2.4.3 External Memory model — EM

External Memory model [5] (also called I/O model or Disk Access Model) com-
bines two older memory models: Floyd’s idealized two-level storage and the
Red-Blue Pebble Game model. The Floyd’s model [25] assumed infinitely big
memory being split to blocks of size B (see figure 4). He showed that the lower
bound to access any word in the memory of size n words is Ω( nB logB) assuming
the tall disk form (the number of blocks is larger than the block size: n/B > B).

The Red-Blue Pebble Game model [34, 35] takes algorithm operations be-
ing presented as nodes on a Directed Acyclic Graph and edges representing
operation dependencies (see figure 5). They define two levels of memories: the
infinitely large one but slow (blue pebbles) and an infinitely fast but small of
size M (red pebbles). The pebble game starts with blue pebbles on the input
nodes. The goal is to proceed towards the output nodes by using at most M
red pebbles at any time and the following moves:
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B

Memory
(n)

...

CPU
O(1) registers

Figure 4: Floyd’s idealized two-level storage. With a fixed number of registers
in CPU and the main memory of size n being split to blocks of size B.

• Place a red pebble on a node, if all predecessors have red pebble.

• Remove pebble from node (forget information).

• Writing: Color red pebble to blue (memory → disk).

• Reading: Color blue pebble to red (disk → memory).

The game ends when all the outputs are covered by blue pebbles. Multiple
paths to the solution exist in the Red-Blue pebble game. We are interested in
the one minimizing the colorings from one color to another one (communica-
tion between the two levels of memory — I/O complexity). Authors examined
DAGs of existing algorithms (FFT, matrix multiplication, scanning) and ob-
tained speedups from Θ(logM) to Θ(M). This was possible because only mem-
ory transfers are taken into account (cache accesses are infinitely fast according
to the model).

Finally, External Memory model defines two levels of memory the same way
as the red-blue pebble game model: The second level which is slow but infinitely
big, and a first level which is infinitely fast but limited in size of M . Both levels
of memory are split into blocks of size B. Memory transfers are now done in
blocks.

EM model counts the number of blocks transferred between the two levels of
memories. The lower bound for the memory transfers is limited by Ω(#cellprobes

B )
and the upper bound to the RAM running times.

In comparison to Hierarchical models described in previous sections, EM
model focuses on the slowest memory levels in the memory hierarchy only —
the communication between the last and the pre-last one. In practice, these
are usually the disk and the main memory. This made the model among the
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inputs:

outputs:

Figure 5: The Red-Blue pebble game on a DAG nearing the end. M = 4

cache-oblivious model being the most favourable when designing algorithms and
data structures and keeping memory hierarchy in mind.
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B

Memory
(n)

...

CPU

Cache
(M)

B

I/O complexity

blocksM
B

Figure 6: External Memory model with two levels of memory: the second level
slow memory on the right of size n and the infinitely fast first level memory on
the left of size M . Memory transfers are done in blocks of size B.
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L1 L2 L3 ...L4
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(t0,B0)Access times: (t1,B1) (t2,B2) (t3,B3)

Figure 7: The Memory Hierarchy models cache sizes, block sizes and access
times of all the memory levels in the hierarchy.

2.4.4 Uniform Memory Hierarchy model — UMH

The Memory Hierarchy model (MH) is a multilevel version of the EM model and
a most realistic model for describing the memory hierarchy. For each memory
level Li, it defines the cache size (Mi), block size (Bi) and the time needed to
transfer a block from the higher level memory (ti), see figure 7. Authors also
assume simultaneous memory transfers between different memory levels which
is feasible for real architectures.

The Uniform Memory Hierarchy Model [7] abstracts all the l levels of the
MH model to only two parameters:

• aspect ratio α = M/B
B ,

• block growth β = Bi+1

Bi
.

The following abstractions are done:

Bi = βi

Mi

Bi
= αβi

ti = βif(i)

where f(x) denotes the cost function accessing a memory cell x.
In comparison to HMM with block transfer, the UMH model captures the

block size the same way as it is done on real computers and not using arbitrary
block intervals. The drawback of the UMH model is the remaining cost function
f(x) which, the same as in HMM, makes the algorithm design and analysis both
difficult and unrealistic in practice.

2.5 Cache-Oblivious model — CO

Cache oblivious model [28] assumes the external memory model but requires
the algorithm to run optimally regardless of the block size B and the cache size
M . Authors proved that optimal algorithms in CO model also run optimally for
memory hierarchies of arbitrary number of levels. They argued that hierarchy
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can always be split into two parts — the slower and the faster one. If memory
transfers between the two parts are optimal, then, in general, memory transfers
are also optimal for any other splitting.

CO model’s obliviousness to B and M is particularly useful in real world
cases because these parameters vary even during a single program execution
(different disk track lengths, cache sharing with another process).

CO model counts the I/O cache transfers Q (the cache complexity) the same
way as the EM model does. Authors also show that the algorithm taking Q
transfers using the ideal cache replacement strategy can efficiently be imple-
mented using LRU or FIFO strategies taking Q∗ transfers. Because oblivious-
ness to B, the design of data structures in CO model usually makes use of the
recursive splitting of data until the chunk size of ≤ B is reached. For M usually
the tall cache assumption is made (M = Ω(B1+ε)). For example M = 4B is the
most common in order for two blocks of data (split across 4 blocks) communicate
to each other efficiently.

3 Parallel models of computation

The goal of using parallel systems to solve a problem is to obtain a p-fold
speedup when p processors are available. Instruction level parallelism (ILP) [33]
is the parallelism achieved in a single core using complex pipelines consisting of
multiple processing elements (PEs). Flynn’s bottleneck describes the fact that as
long as the CPU issues one instruction per cycle, it cannot exceed IPC (executed
Instructions Per Cycle) > 1. To overcome this limit, superscalar computers
issue more than 1 instruction per cycle, but the following dependencies between
instructions occur which reduce the theoretically upper-bound speedup:

Data dependencies or RAW hazards These occur when the result of the
instruction, needed by another instruction, is not calculated yet. This can
be solved by using dynamic scheduling.

Name dependencies The same register is used by different instructions, no
data is passed between them though. This can effectively be solved by
register renaming.

Control dependencies Because of the pipeline, instructions including the
branches are not evaluated instantly. Meanwhile, other instructions al-
ready entered the pipeline which should not be executed. Control depen-
dencies can be partially solved using the speculation (predictors). How-
ever, control dependencies are still the main reason why Flynn’s bottleneck
appear in practice.

Increasing IPC is a difficult task. Modern CPUs achieve IPC of around 0.8−
1.5 (http://software.intel.com/en-us/articles/intel-hyper-threading-technology-
analysis-of-the-ht-effects-on-a-server-transactional-workload). In order to achieve
better parallelism, multi-core or even many-core (e.g. when p > 1000) archi-
tectures are used today. In comparison to ILP, a whole core represents a single
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Figure 8: Comparison of the work and cost in practice on 11 processing elements.

processing element now and not separate processing units inside the pipeline.
Multi-core architectures are comprised of a number of cores on a single chip
(known as chiplevel multi-processor or CMP). Multiple chips (or processors)
can be present inside a single computer. Technically cores communicate with
each other using the shared memory. Multiple computers are connected using a
network and communicate with each other using message passing. This kind of
system organisation is called distributed memory. While parallel systems quickly
achieve optimal speedup from the computing point of view, the communication
between PEs represents the real issue in a parallel algorithm design and analysis
[4]. Low memory bandwidth, latency and network congestion appear soon when
p is increased. This is because the shared memory and the network became a
shared point not only where data is stored, but also where synchronisation and
other PE communication takes place.

Measures

We will present basic parallel measures as in [37]. Parallel models of computa-
tion assume a computer consisting of p processing elements. Function Tseq(n)
denotes the best running time of the algorithm on a problem size n in the sequen-
tial model. Tpar(p, n) denotes the running time of the algorithm on a problem
of size n using p processors. We will abbreviate Tseq = T (1) and Tpar = T (p).

Work W (n) is defined as the sum of actual calculations (steps) done by each
processor. Cost is defined as C(n) = T (p)∗p. Figure 8 illustrates the difference.

Speedup is defined as Sp(n) = T (1)
T (p) and efficiency as Ep(n) =

Sp(n)
p = T (1)

Cp(n)
.

Obviously, Sp(n) ≤ p and Ep(n) ≤ 1. If Sp(n) = p, the algorithm is optimal. If
Sp(n) = Θ(p), the algorithm is efficient. Note that the speedup for optimal and
efficient algorithms is independent of the problem size n.

Redundancy is defined as W (p)
W (1) , utilization as W (p)

pT (p) and quality as T 3(1)
pT 2(p)W (p) .
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Bounds and complexity classes

Amdahl’s law [9] defines the maximum speedup of the algorithm as Sp ≤
1

(1−P )+P
p

where P denotes the portion of parallel code in the algorithm and

p the number of processing elements. This means even if infinitely number of
processing elements are used for processing, actual speedup is always upper
bounded by the amount of sequential code 1/1− P .

Before looking at concrete parallel models of computation, we introduce the
simplest practically feasible circuit called AC0 and a circuit complexity class
NC often used for parallel algorithms. Circuit AC0 consists of a polynomial
number O(nε) of circuit elements of depth O(1) and unlimited fan-in gates where
n denotes the problem size.

An algorithm solving the problem of size n is in Nick’s class (NC), if it
can be solved in polylogarithmic time O(log∗ n) using polynomial number of
processing elements O(nε) with constant O(1) fan-in gates. NC introduces its
own NC hierarchy : NCi is the i-th level in the NC hierarchy where i denotes
the depth of processing elements and consequently the running time of the
algorithm O(logi n).

Integer addition, subtraction and multiplication was shown to be in NC1

using the Wallace tree [50]. However, only addition and subtraction are in AC0.
Multiplication requires at least logarithmic circuit depth. Intuitively, NC is in
a way similar to class P for sequential algorithms running in polynomial time
— only such algorithms are practically feasible.

Parallel environment characteristics

The main question when designing a parallel model of computation is which
characteristics of the parallel system should we capture. Maggs, Matheson and
Tarjan [39] stress out the following ones:

Memory access How fast is the concurrent memory access to the same mem-
ory word or block?

Synchronization Are all processing elements synchronized using a global clock
or asynchronous?

Latency What’s the latency to access arbitrary word for the first time? What
about the second time?

Bandwidth Is the bandwidth between the levels of the memory hierarchy un-
limited?

Primitives Does the system has any unit-cost built-in primitives like the scan
operation?

Good models capture as much characteristics as possible while still main-
taining simplicity in algorithm design and analysis.
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The network

The goal of an efficient network connecting p nodes representing the PEs is to
have a small degree d, for example O(log p), and a small diameter max

u,v
which

allows for a message to be sent fast between any two PEs. In theory, the Moore
graph is a graph with a minimal diameter for the given p and d. However, such
graphs are usually hard to implement.

In practice PEs communicate using two families of network topologies: the
hyper-cube and the expander graph. We will closely look at the former one. First,
we define two operators: the brackets operator 〈x〉 denotes a set of elements
{0, 1, 2, ..., x} and the index i in word wi denotes the word w with flipped i-th
bit. For example w = 5, w0 = 4, w1 = 7, w2 = 1.

The following graphs are commonly used in the hyper-cube family:

N-butterfly
V = 〈N〉 × 〈n+ 1〉

E = {([w, t], [w, t+ 1]), ([w, t], [wt, t+ 1])|w ∈ 〈N〉 , t ∈ 〈n〉}

N-shuffle-exchange
V = 〈N〉

E = {[w,w+1]|w ∈ V,w even}∪{[w, 2w mod (N−1)]|w ∈< N−1 >}∪{[N−1, N−1]}

N-shuffle-exchange introduces two kind of edges: the exchange edges con-
nect each node w to w0 — the node differing in the least significant bit.
The shuffle edges connect w to w′ by cyclically shifting the binary repre-
sentation of w. eg. N = 8, Nnodes, w = 5, d = 3, diam = 2 logN incident
w edges are (5, 4), (5, 6), (3, 5). The first one is the exchange edge and the
other ones the shuffle edges.

N-cube (also called the binary n-dimensional Hyper cube)

V = 〈N〉

E = {(w,wi)|w ∈ V, i ∈ 〈n〉}

N-cube-connected-cycles (also abbreviated as N-CCC) is an N-butterfly net-
work except that for each w ∈ 〈N〉, nodes [w, 0] and [w, n] are the same
node. The butterfly network is therefore transformed into a ring of n
nodes.

In general, the hyper-cube family of networks can be used to efficiently
execute the majority of algorithms like the FFT, odd-even merge etc. sketched
in algorithm 1. For N-CCC and N-butterfly, we need p = N logN PEs and for
N-butterfly and N-cube p = N .
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Algorithm 1: The sketch of the family of algorithms which are efficiently
executable on the hyper-cube family of networks.

for t = 0..n− 1 do
for j ∈ 〈N〉 do in parallel

if tth bit of j = 0 then
A[j], A[j + 2t]← OPERt,j(A[j], A[j + 2t]) ;

end

end

end

3.1 Parallel RAM — PRAM

PRAM [26] is a parallel model of computing consisting of p processing elements
(PEs) and a uniform shared memory. Each processing element consists of a local
private memory, accumulator and a program counter register. PEs are of MIMD
type, but every processing element executes the instruction in the following
synchronous steps where interprocessor communication and synchronisation is
free:

1. Fetch an operand from the shared memory;

2. Perform some computation on local memory (registers);

3. Store a value back into the shared memory.

PRAM uses the same instruction set as RAM does plus the FORK(label)
instruction. This instruction executed by PE Pi selects the first inactive pro-
cessor Pj , clears its local memory, copies Pi’s accumulator into Pj ’s and starts
Pj running at label.

There are 3 models of PRAM based on their concurrent access to the same
memory cell:

Concurrent Read Concurrent Write — CRCW Unbounded number of PEs
can both read and write the same cell in a single step. The strongest model
from the computing complexity point of view.

Concurrent Read Exclusive Write — CREW This was the initial PRAM
model presented in 1978. An unbounded number of PEs can read the same
cell and only one PE can write to a cell in a single step. If multiple PEs
try to write to the same cell, PRAM halts. This PRAM variant is a good
compromise between the ease of algorithm design and realism.

Exclusive Read Exclusive Write — EREW The memory cell is “locked”
for reading and writing to a single PE per step. This is the weakest but
the most realistic model.
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Uniform shared memory

r0

r1

r2

r3

...

P1 P2 P3 Pp
...

Processing elements

Figure 9: The PRAM model consisting of p processing elements and a uniform
shared memory. Processors’ local private memory, accumulator and program
counter register are omitted.

Simulation

We can simulate every p processor CRCW PRAM on a EREW PRAM with a
slowdown factor of Θ(log p) (so called separation factor). The proof is based on
ability of the EREW PRAM to sort, find or compute the result of p processors
for every instruction in a program using the reduction which takes O(log p)
time for p elements. It is important to know that this simulation is not work-
preserving resulting in algorithms not exhibiting linear or near-linear speedups
when increasing the number of PEs.

We can also reduce the number of processing elements p in the system.
Brent’s theorem [17] defines the maximum slowdown for the same PRAM model
using different number of PEs: If an algorithm takes T (1) time on a PRAM with
an unlimited number of PEs executingm operations, a PRAM of the same model
with p processing elements take O(mp + T (1)) time. Using the Brent’s theorem
we can also show that any simulated algorithm in NC stays in NC no matter
how many PEs we use.

CRCW hierarchies

CRCW model introduces the following submodels when concurrent writes to
the same memory cell occur [42]:

Undefined — CRCW-U The value written is undefined.

Detecting — CRCW-D A special symbol representing detected collision is
written.

Common or Consistent — CRCW-C Concurrent writes allowed only, if
all store the same value. Also called the weak CRCW model [24].
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Random or Arbitrary — CRCW-R The value of a random concurrent PE
is written.

Priority — CRCW-P The processor’s value with the lowest priority (index)
is written.

Max/Min — CRCW-M The largest/smallest value is written. Also called
the strong CRCW model.

Reduction or Fusion The arithmetic sum (CRCW-S), logical AND (CRCW-
A), logical XOR (CRCW-X), or some other combination of the multiple
values taking O(1) time is written.

Above described submodels are not equally strong. A PRAM submodel
is less powerful than the another submodel, if such problems exist for which
the first model requires an order of magnitude more computational steps than
the second one. For example, if we want to store the maximum value of all
concurrent writes, CRCW-D requires at least Ω(log n) steps, whereas CRCW-
M writes the maximum value in O(1). In general, the following relationships
are known for some submodels:

EREW < CREW < CRCW–D < CRCW–C < CRCW–R < CRCW–P

Reader interested in strength comparison and simulation of different CRCW
submodels should consult [19].

Algorithm design and analysis in PRAM model determines the parallel exe-
cution time T (n) of the algorithm and the number of needed processing elements
p using a specific PRAM EREW, CREW or CRCW model. PRAM model is
the most abstract model of parallel computing and can serve as a reference for
a more detailed analysis. Practically feasible algorithms are those, running in
logarithmic parallel time using a linear number of processing elements running
on EREW PRAM.

3.1.1 Module Parallel Computer — MPC

The Module Parallel Computer model [40] takes the slowdown of concurrently
accessing the same memory block into account — also known as the problem
of the memory granularity. This is a feasible assumption since the same data
cannot be served to an unbounded number of PEs in constant time.

The MPC model splits the memory of size n into m modules allowing only a
limited number of accesses per time unit. If m = n, then we get EREW PRAM.
Let Rj denote the number of concurrent accesses to module 0 < j < m and
Rmax = max

j
Rj , the goal is to design algorithms in a way to minimize Rmax

over all steps. Obviously Rmax = p in worst case when mp ≤ n. There are two
approaches used to minimize Rmax:

Randomization The key idea is to utilize universal hashing in the simulating
machine. In general, using a uniform memory access distribution results
in minimal memory contention.
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Copies We keep several copies of each logical address in distinct memory mod-
ules. When memory contention happens even though randomization is
used, the concurrent accesses to the same logical word are load-balanced
to multiple physical memory modules.

The following relations between the EREW PRAM and MPC were shown:

• Let m = p3. Then a T (n)-time bounded PRAM with p PEs and n memory
cells can be simulated by a randomized MPC with p PEs and m memory
modules and total memory of size n+ 2p in time O(T (n)).

• Let m = p2. Then a T (n)-time bounded PRAM with p PEs and n memory
cells can be simulated by a randomized MPC with p PEs and m memory
modules and total memory of size n+ 4p in time O(T (n) log n).

• Let m = p. Then a T (n)-time bounded PRAM with p PEs and n memory
cells can be simulated by a randomized MPC with p PEs and m memory
modules and total memory of size (n+ p) log p in time O(T (n) log p).

• Let m = p1+ε for ε > 0. Then a T (n)-time bounded PRAM with p PEs
and n memory cells can be simulated by a randomized MPC with p PEs
and m memory modules and total memory of size (1+2/ε)(N +p) in time
O(T (n)).

Authors showed that there is a trade-off between the number of modules and
the amount of additional memory we are willing to spend in order to achieve
the desired speedup. Algorithms running in EREW PRAM run transparently
in MPC though, taking the upper bounded time as shown above. The model is
more interesting from the theoretical point of view as from the algorithm design
and analysis.

3.1.2 Local-memory PRAM — LPRAM

Local-memory PRAM model [4] focuses on the communication complexity be-
tween the processing elements because the communication latency can represent
the majority of the running time.

LPRAM is a PRAM model with unbounded both local and global memory.
Each algorithm step can be of two types:

Communication step A processor can write, and then read a word from
global memory;

Computation step A processor can perform an operation on at most two
words that are present in its local memory.

The machine is taken to be a concurrent-read, exclusive-write PRAM. The
input data are initially in the global memory and the final outputs must also be
stored there.

LPRAM model measures the computation time (computation steps) and
the number of communication steps per processing element separately. Only
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the problem size n and the number of PEs p are taken into account. Measur-
ing two complexities is useful because the latency is hidden implicitly inside
the communication steps and can vary, depending on the architecture. Paral-
lel computation time is measured the same as in the original PRAM without
the global store and load operations. Parallel communication steps (or com-
munication delay) are calculated by representing the algorithm as DAG and
solving operation dependencies, similar to the Red-Blue pebble game in the EM
model (see figure 5). Usually, a lower bound for p depending on n is provided
for the algorithm to run efficiently. Authors showed that matrix multiplication
two n × n matrices can be done in O(n3/p) computation time and O(n2/p2/3)
communication steps.

3.1.3 Block PRAM — BPRAM

BPRAM model [3] exposes spatial locality to enhance efficiency. This is feasible
because locality is offered by memory caches in the real memory hierarchy.

BPRAM has, similar to LPRAM model, unbounded local and global mem-
ory. Each PE can access local memory in a unit-time and transfer a block of
words from the global memory to the local memory in l+b time where l denotes
the latency to find a block and b the block size. Any number of PEs can access
global memory simultaneously (unlimited bandwidth). Access to the same word
in the global memory is not allowed (EREW). Initially, data are located in the
global memory and in the end it needs to be written back to the global memory.

Latency is theoretically of size l = O(log p) if machines are connected using
a hyper-cube. However, the difficulty of wiring and packaging machines with
large number of processors might make l = pα where α > 0 a more realistic
measure.

In comparison to other models, if we set latency l = 1, we obtain the original
EREW PRAM. If we do not allow block transfers (b = 0), we obtain the LPRAM
model.

BPRAM measures the parallel time complexity and work taking the number
of PEs p, problem size n and latency l into account. Usually, two complexities
are given: one for a latency-processor product lp ≤ n and another for lp > n.
Authors showed that the matrix multiplication of size n×n takes Θ(n3) parallel
running time on p = n-processor PRAM using a conservative memory latency
l = n, which is not any better than running the algorithm on a uniprocessor
RAM. Parallel running time on BPRAM can be reduced to Θ(n2). Similarly,
running times of matrix transposition can be reduced from Θ(n2) taking latency
l = n into account to Θ(n log n) using BPRAM and exposing spatial locality.

3.1.4 Asynchronous PRAMs

Original PRAM is a synchronous model of computation meaning there is a global
clock for all p processing elements doing first reading from memory, then com-
puting and finally writing back to the memory at each step of the algorithm.
While processing elements inside a single machine might run synchronously,

23



many argue that massively parallel machines must be asynchronous because
there is always an operating system and other programs not related to the algo-
rithm running at the same time. Therefore, algorithms should be designed for an
asynchronous model. We will introduce three asynchronous models: APRAM,
Phase (L)PRAM and XPRAM.

APRAM APRAM [21] is a PRAM model consisting of p PEs and m global
memory cells. Every algorithm step is divided into at most 3 substeps, called
events: reading, computing and writing. Algorithm execution is now observed
from the events point of view, so concurrent reads and write events from differ-
ent algorithm steps can be executed simultaneously. To determine the correct
execution order, we need to draw a DAG of events which describes their data de-
pendencies. The synchronisation cost is hidden implicitly inside the algorithm’s
graph.

For synchronisation, a virtual clock is introduced. This clock ticks when at
least one of the events is being processed. Every tick marks the end of a round.
The Brent’s theorem can directly be applied to APRAM: A t round, p PEs
algorithm can be simulated using p′ ≤ p PEs in O(tp/p′) rounds.

APRAM measures the minimum number of rounds needed to complete the
computation depending on the problem size n and the number of PEs p. The
goal in the APRAM model is to redesign algorithms so that PEs synchronise in
constant-size sets only. When this is achieved, it leads to algorithms with the
same time complexity as their PRAM counterparts.

Phase (L)PRAM Phase (L)PRAM [29] is a PRAM model consisting of p
PEs, each with its own local, private memory and a global, shared memory.
The model defines 4 types of instructions, completed after unbounded, but finite
time:

Global reads Reading the contents of a shared memory location into a local
memory location,

Local operations Computing done accessing the local memory only,

Global writes Writing the contents of a local memory back to the global mem-
ory,

Synchronization steps Logical points in a computation where each proces-
sor waits for the other processors to arrive before continuing in its local
program.

The local program consists of a series of phases in which the PE runs inde-
pendently, separated by synchronisation steps. In Phase (L)PRAM, these steps
synchronise all PEs, assigned to the program. Synchronisation takes B time
overall.

Processors can be of either exclusive or concurrent asynchronous read and
write type to the shared memory. However, no processor may read the same
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memory location that another one writes unless there is a synchronisation step
involving both PEs between the two accesses. This eliminates race conditions
between PEs.

The difference between the Phase PRAM and LPRAM is the PRAM charges
a single unit time for global reads and writes, whereas the LPRAM charges d
for global writes and 2d for global reads. This gives the following relation: Any
EREW PRAM algorithm running in time t using p PEs can be simulated by
and EREW Phase (L)PRAM running in time O(Bt) with p/B processor. In
worst case, PEs are synchronised after each step. The goal in designing efficient
Phase (L)PRAM algorithms is to overcome these immediate time and processor
bounds.

Brent’s theorem can be used for Phase PRAM: A Phase PRAM program
using p PEs, s synchronisation steps, a total of x work and running time t+Bps
can be simulated by a Phase PRAM using p′ < p PEs in time O((x/p′) + t +
Bp′s).

Phase (L)PRAM measures the parallel running time of the algorithm. Phase
PRAM parameters are the problem size n, number of PEs p and synchronisation
time B. Phase LPRAM adds the global memory writing time parameter d
(reading time is 2d). When analysing the algorithm complexity, a sum of critical
paths between synchronisation steps are taken into account plus the total time
needed for synchronisation steps.

XPRAM XPRAM model [48] assumes globally synchronised p sequential
PEs, each with its own unbounded local memory, connected by a sparse message-
passing communication network. PEs execute operations in supersteps.

In each superstep, every PE i performs ai operations using only the access
to the local memory, sends bi and receives ci messages. Each global operation
takes g ≥ 1 time. Every processor i thus needs

ri = g−1ai + bi + ci

time to finish the step. The overall parallel running time of a superstep is

t = max
i∈〈p〉

(ri)

where 〈p〉 is a set of PEs.
XPRAM is bulk-synchronous model which means PEs should be barrier

synchronised at regular time intervals. More precisely, we define the period of
the superstep L meaning that every L steps, a superstep will be called. We
round the runtime of a superstep to (dt/Le)L standard global operations or
time (dt/Le)Lg. The period L is usually dependent on p, the authors assumed
L = log p.

The memory of size m is split into modules. The ith PE contains all words
j ∈ 〈m〉 such that

j mod p = i
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. Then we choose a hash function h randomly from a class of universal hash
functions H. Each h maps memory words 〈m〉 to themselves. The purpose of
h is to spread out the memory accesses as uniformly as possible. Good hash
functions are those having the expected number of references to the memory
module

R̂ = O(log p)

for the memory size p log p. Fast hash functions take O(g) time where g denotes
the access time for the global memory.

Authors defined the E-PRAM as EREW PRAM and C-PRAM as CRCW
PRAM with non-unit time access to the main memory g. In comparison to
XPRAM they showed the properties of the following simulations:

• XPRAM with p PEs with fast good hash function can simulate an E-
PRAM with v PEs with expected optimal efficiency if v > p log p.

• XPRAM with p PEs with fast good hash function can simulate a C-PRAM
with v PEs with expected optimal efficiency if v ≥ p1+ε for some ε > 0.

• A p-cube or p-directed butterfly can simulate an XPRAM with p PEs with
expected optimal efficiency.

The goal of the XPRAM model is to easily simulate more general PRAM
algorithms and still having a model which can easily be implemented on net-
works. The model measures the parallel running times taking the number of
PEs p, superstep period L and the access time to the global memory g into
account.

3.1.5 Queued Read Queued Write PRAM — QRQW

Queued Read Queued Write PRAM [30] introduces a queued access to the RAM.
The model focuses on memory contention, that is the number of PEs access-
ing the same memory cell in one PRAM step. Empirical results on commercial
machines show that the slowdown in parallel environments is linear to the mem-
ory contention. In comparison to CRCW PRAM, the contention is completely
ignored and the memory access takes a single time-unit for an unbounded num-
ber of PEs. On the other hand, the EREW memory access stalls PEs until the
memory contention is solved, which appears too strict in practice. The majority
of algorithms written in EREW model run faster on real architectures indeed.

Queued PRAM allows each location to be read or written by any number of
processors in each step. Concurrent reads or writes to a location are serviced
one-at-a-time. Queued reads and writes can be combined with PRAM’s con-
current or exclusive reads and writes thus obtaining hybrid CRQW, QREW,
QRCW or ERQW models. Authors empirically show that among concurrent,
exclusive or queued PRAM models, the queued model (QRQW or CRQW) best
describes the behaviour of existing super-computers.

QRQW PRAM is strictly more powerful than EREW PRAM and less power-
ful than CRCW for a separation factor of

√
lg n time and preserving work. Un-

like CRCW, CREW or EREW PRAM which ignore network topology, QRQW
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uses the more realistic hypercube-type non-combining networks. This type of
network can practically be implemented and it’s the reason for the linear slow-
down when executing CRCW algorithms on many cores in practice.

Consider a single step of a PRAM, consisting of a read substep, compute
substep and a write substep. The maximum contention (denoted κ) of the step
which is the maximum, over all locations x, of the number of processors reading
x or the number of processors writing x. A step with no reads or writes is
defined to have maximum contention 1.

Two QRQW variants exist where both are synchronous in terms of the
PRAM substeps (reading, computing, writing):

SIMD-QRQW PRAM model is a PRAM in which the time cost for a step
with maximum contention κ is κ. If there are multiple writers to the same
location, arbitrary PE succeeds.

QRQW PRAM is a PRAM consisting of a number of processors, each with its
own private memory, communicating by reading and writing locations in
a shared memory. The time cost for a step with the maximum contention
κ, number of reads ri, computations ci and writes wi per processor i is
max
i

(ri, ci, wi, κ). This model, in comparison to SIMD-QRQW, CRCW

or EREW, allows multiple reads and writes per PE at a time and adding
read/write requests to a location queue.

The primary advantage from the algorithm complexity point of view of the
QRQW PRAM model over the SIMD- is that the QRQW permits PEs each
to perform a series of reads and writes in a step while incurring only a single
penalty for the contention of these reads and writes. In SIMD-QRQW, a penalty
is charged after each read or write in the series. Both models have the same
order of complexity though: A p-processor QRQW PRAM algorithm running
in time t can be emulated on a pt-processor SIMD-QRQW PRAM in time O(t).

We adopt the Brent’s theorem for the QRQW model: Any algorithm in the
QRQW work-time presentation with x operations and time t, where t is the
sum of the maximum contention at each step, runs in at most x

p + t time on p
PEs QRQW PRAM. We assume the processor allocation to be free.

QRQW PRAM measures, similar to the PRAM, the parallel time-cost per
step, total parallel time and work, also taking memory contention into account.
Empirically, QRQW model better describes the running times on commercial
machines than the EREW or CRCW models without introducing any new vari-
ables in time complexity functions. The model is thus being more appropriate
for high-level algorithm design.

3.2 Bulk Synchronous Process model — BSP

BSP [49] bridges in a performance-faithful manner what the hardware executes
and what is in the mind of the software writer. The model assumes that:

• computation is divided into supersteps;
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• PEs behave as asynchronous MIMD. Synchronisation is done after each
superstep;

• PEs can arbitrarily send and receive messages to and from other PEs in
a non-blocking manner;

• messages are delivered at the end of each superstep.

BSP is a message-passing model. Model parameters include speed of each
processor s, the number of PE steps to synchronize processors or to build paths
between them l (latency) and the number of processor steps per word to deliver
a message g (gap) using an already built path. These parameters are unavoid-
able physical constraints. Beside the number of physical PEs p the model also
introduces a number of virtual processors v. BSP assumes sufficiently large num-
ber of virtual processors (v ≥ p log p). Virtual processors can be looked as a
processes or tasks. This eases algorithm design and reduces overall communica-
tion latency because context-switch latency is much lower than communication
between the physical PEs.

BSP is a realistic model for measuring the communication complexity be-
tween PEs (the number of transferred messages). Algorithm analysis usually
provides two complexities: one for small latency l and another one for the larger
latency.

3.2.1 LogP machine model

LogP model [23] keeps all variables from BSP and extends it by adding addi-
tional overhead time o for preparing the message for transmission. The intuition
behind is that if o is larger than l, BSP becomes unrealistic.

By introducing o, LogP bridges the shared-memory model with the distributed-
model through an implicit exchange of messages [38] taking at most O(l+o+g)
time.

LogP is used for analysing the algorithm’s communication complexity be-
tween PEs. Two results are usually provided depending on the small or large
o.

3.2.2 Multi-level BSP model — Multi-BSP

Multi-BSP model [47] is a hierarchical model, with an arbitrary number of
memory levels d (depth). In comparison to the basic BSP, no direct horizon-
tal communication is allowed between PEs in Multi-BSP. Such communication
would need to be simulated via memory at a higher level. This behaviour is
typical for multi-core systems.

Multi-BSP uses 4d parameters

(p1, g1, L1,m1)(p2, g2, L2,m2)(p3, g3, L3,m3)...(pd, gd, Ld,md)

, where:
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Level i-1 component

...pi components...

Level i-1 component

Level i memory: mi

Synchronization cost: Li

Data rate: gi-1

Level i component

Data rate: gi

Processor

...p1 components...

Processor

Level 1 memory: m1

Synchronization cost: L1=0

Data rate: g0=1

Level 1 component

Data rate: g1

(a) (b)

Figure 10: a) Schematic diagram of the Multi-BSP model component structure
for the level i. b) Level 1 component.

pi is the number of components on level i − 1. p1 denotes the number of raw
processors, which can be regarded as a level 0 components.

gi is the communication bandwidth parameter. It is the ratio of the number of
operations that a processor can do in a second versus the number of words
that can be transmitted in a second between the memories of a component
at level i.

Li is the cost charged for this barrier synchronization for a level i superstep.
L1 = 0 since the subcomponents of a level 1 have no memories and directly
read from and write to the memory level 1.

mi is the number of words of memory inside each of the ith level component.

Figure 10 illustrates the model. In comparison to multi-core models like
PMH (see section 3.3) or PCO (see section 3.4), it doesn’t take the cache block
size into account but the issue of synchronization.

Multi-BSP model can easily be adopted to describe similar models:

d = 1, (p1 = 1, g1 =∞, L1 = 0,m1) gives the von Neumann model,

d = 1, (p1 ≥ 1, g1 =∞, L1 = 0,m1) gives the general PRAM,

d = 2, (p1 = 1, g1 = g, L1 = 0,m1 = m)(p2 = p, g2 =∞, L2 = L,m2) gives the gen-
eral BSP model with constraint that communication between components
on a the same level is forbidden, but requires passing the message to a
level higher. This concrete model is called the BSPRAM model [46].

An optimal Multi-BSP algorithm with respect to the given algorithm in
original BSP A is the following:
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• It is optimal in parallel computation steps to the constant factors and in
total computation steps to within additive lower order terms;

• It is optimal in parallel communication costs to constant factors among
other Multi-BSP algorithms;

• It is optimal in synchronization costs to constant factors among other
Multi-BSP algorithms.

With respect to the real architectures, Multi-BSP has two requirements.
First, the barrier synchronisation needs to be supported efficiently. The second,
the model controls the storage explicitly. This might be problematic because
there are various cache protocols used in practice which are not necessarily
revealed.

Multi-BSP measures the communication and synchronisation costs sepa-
rately. Both are calculated by summing costs over all d levels. Each level
cost depends on the 4d parameters described above. Multi-BSP doesn’t define
the usage of concurrent or exclusive reading or writing. Usually algorithms are
analysed in EREW manner and problem lower bounds in CRCW.

3.3 Parallel Memory Hierarchy — PMH

PMH [8] consists of a height-h tree of memory units, called caches. The tree-of-
caches has processing elements for leaves and the root represents an infinitely
large main memory. For every node its cache is shared among all its descendants.
Processing elements posses private memory because they don’t have any siblings
sharing their parents’ memory.

The model assumes non-inclusive cache. This means that a memory block
is stored only once in the whole tree without being stored at all ancestor caches.
On writing a weak consistency is assumed meaning that cache lines are merged
on writing back to memory thus avoiding “false sharing” issues.

Each level i in the tree is parametrised by four parameters:

• Cache size (Mi);

• Line or block size (Bi);

• Cost of a level-i cache miss (Ci);

• Fanout — the number of level-(i − 1) caches below a single level-i cache
(fi).

Figure 11 illustrates parallel memory hierarchy.
We will examine two specific variants of the PMH model: the two-level Paral-

lel External Memory model and a three-level multicore cache model. Described
PMH models ignore synchronization cost between PEs. Communication and
latency are measured implicitly using the memory transfers between memory
levels.

30



Memory: Mh = ∞ ,B h

Mh−1, Bh−1 Mh−1, Bh−1 Mh−1, Bh−1 Mh−1, Bh−1

M1, B1 M1, B1 M1, B1 M1, B1 M1, B1

h

fhfh−1 f1

fh

f1
P P P f1

P P P f1
P P P f1

P P P f1
P P P

Cost: Ch−1

Cost: Ch−2

...

Figure 11: The Parallel Memory Hierarchy model.

3.3.1 Parallel External Memory - PEM

PEM model [10] offers a viable tradeoff between the Parallel RAM (PRAM)
and External memory model (EM). The model is comprised of p processors and
a two-level memory hierarchy consisting of the external memory shared by all
processors and p internal memories (caches). Each cache is of size M and parti-
tioned in blocks of size B. Caches are private meaning processor cannot access
other processors’ caches. To perform any operation on the data, a processor
must have the data in its cache. The data is transferred between the main
memory and the caches in blocks of size B. Figure 12 illustrates the model.

If concurrent writes to the main memory occur, any of the CRCW, CREW
and EREW models from the PRAM can be assumed. For simulating CRCW on
EREW, CRCW-P is used by sequentially writing the same block to the main
memory. This can be done in O(log p) block transfers by combining resulting
blocks of pairs, fourths and so on processors into a single block in log p rounds.

PEM measures the parallel I/O complexity meaning the number of parallel
block transfers. For example, if an algorithm with each of the p processors
simultaneously read one (different or the same) block from the main memory we
would obtain O(1) complexity and not O(p) transfers. If we set the cache sizes
to be constant or non-existant, the PEM algorithms turn into corresponding
PRAM algorithms. On the other hand, if we only use a single processor, the
algorithms turn into solutions for EM.

3.3.2 Multicore cache model — MC

The multicore cache model [14] reflects the real chip multiprocessor (CMP)
architectures in a way that both the private (L1) and shared among other cores
(L2) caches are on the same chip.

There are p > 1 processors in the MC model along with private L1 caches
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each of size C1, a shared L2 cache of size C2 ≥ pC1 and the main memory of
unbounded size. Each memory level is partitioned into data blocks of constant
size B. Initially, all caches are empty and the input resides in the main memory.
Each processor can only read/write into L1 cache resulting in moving blocks
from one level to another one to obtain this. There is only a single copy of the
block in the caches or memory (the non-inclusive caches as in PMH). All other
copies are “invalidated” as in the real CMPs. A block can also be “evicted”
from a cache to make room for another block. The model assumes LRU block
replacement strategy. The MC model is illustrated in figure 13.

The multi-level cache complexity largely depends on the selected task sched-
uler. This main issue happens when multiple CPUs want to write the same
memory block at the same time. A key new dimension appears: Scheduling
tasks so that the writes of multiple PEs to the same memory block are far apart
in time. This is also called constructive sharing of a largely overlapping working
set in contrast to the destructive competition for the limited on-chip cache.

To solve this issue, we need to represent the algorithm as DAG and analyse its
cache accesses. In general, two families of schedulers exist. The parallel depth-
first (PDF) scheduler schedules the task optimally according to their priority
in the algorithm’s DAG. The work-stealing (WS) scheduler forkfs tasks when
a loop occurs and places them on a local processor’s work queue. Processors
take tasks from the bottom of the local queue and “steal” from other queues
when their local queue gets empty. Both PDF and WS schedulers suffer from
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excessive shared and private cache misses respectively for pathological problems.
Figure 14 illustrates the difference between the work-stealing (WS) schedulers
and the space-bounded parallel depth-first schedulers (PDF) for the merge sort
from the cache hit/miss ratio point of view.

The MC model considers three performance metrics: the parallel time com-
plexity, and both the L1 ↔ L2 and L2 ↔ main memory block transfers. Com-
plexity functions use the problems size n, number processing elements p, block
size B and cache sizes C1 and C2. The goal when designing an algorithm in
MC model is that cache misses match the sequential cache complexity while
maintaining full parallel speed-up.

3.4 Parallel Cache-Oblivious model — PCO

PCO is a parallel version of the cache oblivious model. The main issue when
exposing the CO model to more processing elements is that caches are not
fully shared anymore. This eliminates the CO theorem which proves, if cache
complexity is ideal for two levels of the memory hierarchy it is ideal for all levels
of the memory hierarchy. PCO model overcomes this issue by introducing a
modified space-bounded scheduler.

PCO model assumes algorithms with nested parallelism which allows arbi-
trary dynamic nesting of parallel loops (different depths for different iterations).

33



Cache miss

Cache hit

Mixed

Work Stealing (WS):

Parallel Depth First (PDF):

Figure 14: Parallel Merge Sort: WS vs. PDF schedulers cache miss ratio using
8 cores where the shared cache is of size n. PDF uses sequential execution order
of tasks for task priorities.

Synchronisation is done solely on forks and joins. Majority of algorithms can
be presented using the nested parallelism.

PCO model [15] uses the Parallel memory hierarchy (PMH) architecture
having tree-of-caches. PCO consists of three components: the parallel cache
cost model, the new cost metric dependent on the level of parallelism and a
modified space-bounded scheduler. The PCO cache cost model originates from
the CO model’s cache complexityQ∗(n;M,B). The model for sequential strands
remains the same as in CO. When a task t forks a set of child tasks though, one
of the following rules are considered:

• If t fits in M , all children tasks start with the cache state of the parent
task.

• If t doesn’t fit in M , cache state is emptied at the fork and join points.

PCO assumes data reuse among PEs only when there is a serial relationship
between instructions accessing the same data. Formally, the cache complexity
for a strand s, parallel block b and a task t is defined as:

Q∗(s;M,B;κ) = QCO(s;M,B;κ)

For b = t1||t2||...||tk:

Q∗(b;M,B;κ) =

k∑
i=1

Q∗(ti;M,B;κ)
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And for t = c1; c2; ...; ck:

Q∗(t;M,B;κ) =

k∑
i=1

Q∗(ci;M,B;κi−1)

where κi = ∅, if S(t;B) > M and κi = κ ∪ij=1 loc(cj ;B), if S(t;B) ≤ M .
loc(t;B) denotes the set of distinct cache lines accessed by task t and κ the
cache state at the given point in time.

Work complexity is obtained by setting M = 0 and B = 1 obtaining
Q∗(t; 0, 1;κ).

The second component — the new cost metric — penalizes large imbalance
in ratio of space to parallelism in subtasks. If the level of parallelism α is
low, this consequently leads to unused processing elements along with their
caches resulting in lower cache sizes overall. Authors define the effective cache
complexity Q̂α(c) taking this parameter into account. It was also shown in [16]
that with sufficient available parallelism, for p processors only a slightly larger
shared cache is needed than for a single processor (usually adds O(p log∗ n)).

The third component — the modified space-bounded scheduler — is an ex-
tension to the greedy space-bounded scheduler [20]. A space-bounded scheduler
accepts dynamically parallel programs that have been annotated with space re-
quirements for each recursive subcomputation called a “task”. Authors show
that any space-bounded scheduler assures that the number of misses across all
caches at each level i of the machine’s hierarchy is at most Q∗(n;Mi, Bi). In
comparison to WS and PDF schedulers, the modified space-bounded scheduler
provably bounds the number of cache misses.

PCO measures the running time on parallel machines and the cache com-
plexity of the algorithm the same way as CO does, but taking PMH into ac-
count. The cache complexity function includes the problem size n, temporal
locality (M), spatial locality (B) and the level of parallelism (α). Parallel run-
ning times also include the number of processing elements p. Optimal PCO
algorithms have the same cache complexity as in the CO model and the same
running times divided by p.

4 Vector RAM — VRAM

Vector RAM [13] (VRAM) model is used to describe vector machines. Vector
processor in comparison to the scalar one (as seen in (P)RAM model) uses the
vector as a primitive data structure. Scalar PEs on the other hand only use
scalar atomic values for operands.

VRAM model beside the memory as in PRAM defines another memory as
an unbounded number of addressable memory cells each containing arbitrarily
large simple vector of words. In addition to the vector memory it also contains
a parallel vector processor and vector I/O ports. Figure 15 illustrates a pure
vector architecture.

VRAM instruction set includes the following primitive instruction set:
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Figure 15: Vector RAM architecture consisting of the Controller, Vector CPU
and Vector memory consisting of arbitrarily large vector words. The scalar
memory and scalar CPU can also be present separately, but are omitted in the
figure.

Scalar instructions Basically instructions of a standard RAM like the arith-
metic and logical operations, a conditional-jump instruction and indirect-
addressing instructions.

Elementwise instructions They operate on equal-length vectors producing
a result vector of the same length. These are arithmetic and logical oper-
ations such as +, −, ∗, OR and NOT .

Permute instructions These take two vector arguments: a data vector and
an index vector. The result vector includes the elements from the data
vector permuted for locations in the index vector. Resulting vector can
be of same size as the data vector is or less, if the index vector doesn’t
include all the element indices.

Scan instructions These operations execute a scan operation on a vector.
These include the sum over all the elements in the vector, finding a mini-
mum or maximum element.

Vector-Scalar instructions These instructions are extract, insert, distribute
and length and take both scalar and vector arguments.

Each instruction is executed in a single unit-step. Using a combination of
these instructions one can implement a rich set of operations. Authors provide
implementations of the index, reduce, distribute, append, pack, split, flag-merge,
inverse-permute, enumerate and max-index using O(1) steps.

From the programming point of view the main difference between VRAM
and PRAM is that in PRAM the parallelism comes from serial primitives run-
ning in parallel. Programming requires both serial (program running on each
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PE) and parallel control (synchronisation). In VRAM, the parallelism comes
from parallel primitives themselves while strictly having a serial control. This is
also the reason why VRAM is not classified as a parallel model of computation
— it doesn’t provide a parallel control.

VRAM measures the step complexity and the element complexity. The step
complexity is the number of calls to the primitive instructions and the element
complexity is the vector length (source and destination) per primitive instruction
call, summed over the number of calls. Step complexity can be thought of as
the parallel complexity of the algorithm for p =∞ in the PRAM model and the
element complexity for p = 1. Similarly one could think the step complexity
as the number of layers in the boolean circuit and the element complexity as
a sum over the elements over all the layers. VRAM model can describe both
the SIMD architecture, if taking the algorithm step complexity into account,
or SISD architecture, if taking the algorithm element complexity into account.
Both complexities depend only on the problem size n and not the number of
PEs. Algorithm step complexity in VRAM take O(lg n) less than the parallel
complexity of algorithms in EREW PRAM and for some algorithms in CRCW
PRAM as well.

4.1 K-model

K-model [18] is a hybrid model of computation capturing characteristics of mod-
ern Graphical Processing Units (GPUs). These consist of a number of stream
multiprocessors (SM). Each SM contains many cores executing the same in-
struction over different data (SIMD).

A stream program organizes data as streams and expresses all computations
as kernels. A stream is a sequence of elements of the same type and in compari-
son to array does not allow random access to arbitrary location. A kernel takes
a set of input streams, performs a computation and produces output streams.
Each stream can be manipulated independently. Streams passing among mul-
tiple computation kernels form a stream program.

Figure 16 illustrates the K-model architecture. K-model consists of k scalar
execution units E[k] connected to a single instruction unit where our stream
program is stored. Variable k therefore denotes the number of scalar execution
units in a single SIMD processing element in contrast to variable p found in
parallel models of computation which denotes fully fledged MIMD machines.
Behaviour of these execution units closely resembles the VRAM model for its
serial control. K-model introduces two types of memories:

Internal memory Also called the shared memory located on a SM chip in
the GPU world. Internal memory is of unbounded size divided into k
modules or banks. For every bank, the Queued-Read-Queued-Write model
is assumed (see chapter 3.1.5).

External memory Also called the global memory located on a device in the
GPU world. External memory is of unbounded size divided into blocks
of size k. A single block is transferred to PEs in a transaction so the
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Figure 16: The K-model architecture consisting of k PEs, an instruction unit,
queued internal memory and the external memory.

coalesced access pattern is the optimal one. This memory is similar to the
PEM for B = k and M = k.

Scalar execution units can communicate with both internal and external
memory depending on the stream program. Initially, all the input data is stored
in the external memory and eventually all the output data need to be stored
there.

K-model measures three complexities: the parallel time or latency (T ), the
work or length (W ) and external memory transactions (G). The parallel time
is the latency for each instruction summed over all executed instruction on k
execution units. According to the QRQW model, the instruction latency is
increased for the number of simultaneous accesses to the internal memory. The
work describes the execution time for a single scalar execution unit. Ideally, as
in the parallel models, the optimal speedup is achieved when W

kT = 1. Function
G measures the number of transferred blocks from and to the external memory.
Algorithm designers often pick a trade-off between the external and the shared
memory usage. All the complexities depend solely on two parameters — the
problem size n and the number of scalar processing elements k.

5 Conclusion

In this survey we investigated the most significant sequential models of compu-
tations through time along with their parallel model counterparts. Finally we
described a Vector RAM model which is in-between the sequential and parallel
models of computation. A good model of computation gives the algorithm de-
signer formal environment to design and analyse a new or improve the existing
algorithm assuring good performance on real architectures.

To design an efficient algorithm we need to consider the architectural bottle-
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necks. The most critical one in sequential algorithms is the time needed for data
to become available for the processing element to operate with them. In the
parallel environment, we aim to ideally achieve a p-fold speedup using p process-
ing elements. Basically, parallel environments can be classified as the multi-core
or many-core environments which offer both serial and parallel control over the
processing elements, and the vector stream processing environments which offer
only serial control.

When dealing with many-core environments (very high number of process-
ing elements) the time needed for PEs for synchronisation and communication
becomes considerable. Modern parallel models of computation such as the PCO
assume we can bound the needed time for synchronisation and communication,
if we localise the algorithm execution by focusing on efficient usage of the mem-
ory cache. This cache complexity bound also reflects to the communication time
in the practically feasible hyper-cube network topology. Therefore, it is crucial
to design parallel algorithms with good parallel cache complexity. This is gen-
erally done in two steps: First, we design a cache-oblivious algorithm that is
cache efficient under sequential execution and the execution graph has low depth
(e.g. O(log∗ n)). Second, we choose an appropriate scheduler that converts good
sequential cache complexity to a good parallel one.

Programming for vector stream processors is different in a way that primitive
instructions can manipulate on a vector of data and not a single memory word.
This forces algorithm designer to focus on parallel implementation from the be-
ginning because the only way to write parallel programs for such machines is to
use separate vector instructions in a serial control manner. It requires organising
data in a way that vector instructions can effectively manipulate them. While
the serial control in the program seems easier than the approach described for
the multi-core scalar computers, the memory hierarchy and the limited vector
size in practice make designing the algorithms for such architectures as difficult
as for the multi-core ones.
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