
Theoretical aspects of ERa, the fastest practical suffix tree
construction algorithm

Matevž Jekovec
University of Ljubljana, Faculty of Computer and

Information Science
Tržaška 25

1000 Ljubljana, Slovenia
matevz.jekovec@fri.uni-lj.si

ABSTRACT
Efficient construction of the suffix tree given an input text
is an active area of research for the past 40 years. Both
theoretical computer scientists and engineers trickled the
problem. Unfortunately in the last decade not many re-
sults were acknowledged between the two communities. In
this paper we narrow this gap by providing formal analysis
of the practically fastest to date parallel algorithm for suffix
tree construction using the well-accepted Parallel External
Memory model of computation.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing—Indexing methods; H.2.8 [Database
Management]: Database Applications—Scientific databases;
J.3 [Life and Medical Sciences]: [Biology and Genetics]

General Terms
Algorithms

Keywords
Suffix tree, parallelism, external memory, sequence indexing,
genome indexing

1. INTRODUCTION
Suffix tree and suffix array data structures are the most
widely used data structure in text indexing applications.
They both allow answering three main queries: 1) is the
given query string P present in the text, 2) where are located
all its’ occurrences in the text and 3) finding the longest
prefix of the given query string P still present in the text.
Suffix trees and suffix arrays allow answering these questions
in time O(|P |) and O(|P | lgn) respectively.

There were many practical suffix tree construction algo-
rithms presented in the past, some of them based on suf-
fix arrays, the others constructing the suffix tree directly.

The most recent ones being B2ST [2], Wavefront [4] and
ERa [6]. In this paper we will focus on ERa, the fastest
practical algorithm for the suffix tree construction to date.
From the theoretical point of view, it was already shown
in [3] that the suffix tree and suffix array construction is
tight to (parallel) string sorting problem: Ω(n logn) time
and Ω(n

pB
logM/B

n
M

) parallel block transfers. In this paper

we are interested about the parallel time and I/O complexity
of ERa. We show that the algorithm running time and block
transfers are not tight thus leaving open question whether it
is possible to design an I/O optimal algorithm which is also
practical.

The rest of the paper is divided into three parts. In section
2 we introduce our notation, the suffix tree and provide in-
tuitive outline of ERa. The core of the paper is section 3
providing formal time and I/O complexity analysis of the
algorithm. We conclude our results in section 4.

2. BACKGROUND
2.1 Suffix tree
Given a text T [1..n], the substring T [i..n] for any i ∈ {1...n}
is called a suffix of T . The characters in T are from a finite
alphabet Σ except for the last character T [n] = $ which
is called the delimiter character and is unique in the text.
The suffix tree (formally introduced and constructed in [7])
is compressed trie storing all suffixes of T . Each edge rep-
resents a substring of T of length 1...n. There are exactly
n leafs in the suffix tree where each leaf stores a position of
the suffix in the original text. Each path from the root to
the leaf defines a unique suffix and the value in the leaf de-
termines its location inside the text T . The children of each
node are lexicographically ordered. If we traverse all the
leafs from left to right, we obtain lexicographically ordered
suffixes of text T .

In order to find all the occurrences of a given pattern P in the
text, we scan the pattern character by character and follow
the edge corresponding to the character or checking whether
the current edge label matches the characters, if the edge’s
label length is > 1. If there is no corresponding edge in
the node or the edge label doesn’t match the corresponding
character in P , no such pattern exists in the text. Otherwise,
we return all the leafs’ values (suffix positions in the text)
inside the obtained subtree. To avoid O(P · occ) time, we
add two additional links to each internal node pointing to the
left- and the right-most descendant in its subtree and make a

linked list of all the leafs. Without asymptotically increasing
the space complexity, this approach allows us to jump to
the leaf in constant time and report the corresponding leafs
linear time.

2.2 PEM model
Parallel external memory (PEM) model [1] is of a shared
memory kind consisting of p processors and a two-level mem-
ory hierarchy. The 2nd level is an external memory and
accessible by any processor, whereas the 1st level memo-
ries are private caches, each of size M . Processors can only
perform operations by accessing their caches. The data is
transferred between the external memory and the caches in
both directions in blocks of size B. It is assumed there is
enough bandwidth between the external memory and caches
to support transferring any block to each of the processors
in parallel. This is the fundamental difference between the
sequential EM model when evaluating the complexity of the
algorithm. Figure 1 illustrates the PEM model.

B

Memory
(n)

CPU1

Caches
(M)
B

blocksM
B

CPU2

CPUp

Figure 1: The Parallel External Memory model.

If concurrent writes to the external memory occur, any of
the CRCW, CREW or EREW models are allowed. For sim-
ulating any CRCW algorithm on EREW, Priority-CRCW
can be used to merge contents of the same block first in
pairs, fourths and so on in dlog pe rounds. If not stated oth-
erwise, we will use PEM CREW model through the rest of
this paper. Beside the parallel running time, we will use the
parallel I/O performance metric, i.e. the number of parallel
block transfers between the external and the main memory.

2.3 ERa
Elastic Range algorithm is the fastest algorithm for the suf-
fix tree construction to date [6]. It runs in two phases: the
vertical partitioning and the horizontal partitioning. The pa-
rameters of the algorithm are the number of processors p and
the main memory size M . We first outline the two phases
in this section intuitively and provide formal algorithms and
its formal analysis in the next section.

The vertical partitioning is used to partition the suffix tree
into manageable suffix subtrees Tπi fitting into the main
memory M . This is done by first scanning the original text

and remembering the frequencies of characters fπi for the
character πi : 1 ≤ i ≤ |Σ|. Then, obtained characters are
appended their succeeding characters of the original text.
πi thus become substrings of the original text of length 2
for 1 ≤ i ≤ |Σ|2. Authors of [6] denote these substrings
as S-prefixes, because they represent prefixes of the suffixes
of the original text. Note that each πi occurrence in the
original text introduces one text suffix starting at that loca-
tion resulting in one leaf and at most one internal node in
the suffix tree. Keeping this in mind and knowing the node
space consumption we can calculate the maximum frequency
of each S-prefix so its corresponding suffix tree will still fit
into the main memory. The goal of the vertical partitioning
is to extend S-prefixes until their frequencies are lower than
this bound. It returns a set of empty suffix subtrees Tπi

consisting only of leafs representing occurrences of πi. One
or more subtrees are packed into virtual trees, each fitting
into the main memory as tight as possible.

The horizontal partitioning takes the occurrences of each
S-prefix πi as the input and constructs internal nodes of
the suffix subtree Tπi . The crux of the method is optimiz-
ing 1) the original text access and 2) the memory access.
Optimizing text access only is relatively easy by building
the suffix tree in a breadth-first manner and scanning the
whole input text layer by layer in the suffix tree. Readers
should consult [6] for details. Combining both the efficient
original text access and the memory access is more demand-
ing: by definition, suffix tree contains suffixes ordered lexico-
graphically, whereas the original text can have any character
present at arbitrary location. Therefore, one cannot expect
to construct the suffix tree using a tree traversal and con-
tiguous text access. How the horizontal partitioning does
it is to first read the text from the left to the right and at
each S-prefix occurrence store the text following the S-prefix
into the buffers of fixed size located in the main memory.
Then, the algorithm does an in-memory string sorting of
the buffers. This is the only non-sequential memory access
step of the whole approach. Finally, by sequentially reading
the ordered buffers and knowing their original location in the
text, the algorithm constructs a suffix tree in the external
memory sequentially by a depth-first tree traversal. Gluing
suffix subtrees together to the final suffix tree requires only
setting the correct references in constant time per processor.

3. THE ANALYSIS
For the analysis we acknowledge two assumptions:

• The main memory size property: M2 > n and

• the input text is not skewed meaning it has an uniform
distribution of substrings. The human genome and
music were shown not to be skewed in [5].

3.1 Vertical Partitioning
Algorithm 1 shows the vertical partitioning algorithm from
[6] with slightly different notation: We denote the maximum
number of leafs in the main memory as M instead of FM .
The algorithm first builds a set P of S-prefixes fitting into
the main memory in lines 4-11. The number of iterations
depend on the longest path label in the text, |Σ| and M .
The uniform substring distribution of the input text leads

to 1 ≤ k ≤ log|Σ|
n
M

expected number of iterations and |P | =
O(n

M
) S-prefixes. The inner loop in lines 7-10 is executed

|Σ|k times each iteration k. In line 12 any sorting algorithm
of integer numbers is involved. In lines 13-22 a First-Fit
Decreasing heuristic for bin packing problem is used ([8])
to construct virtual trees of S-prefixes fitting into the main
memory. Assuming a uniform distribution of substrings all
frequencies fπi are equal and expected to be between M

|Σ| <

fπi ≤ M , then the loop is iterated between n
|Σ|M and n

M

times respectively.

Algorithm 1: VerticalPartitioning

Input: String S, alphabet Σ, 1st level memory size M
Output: Set of V irtualTrees

1 V irtualTrees← ∅
2 P ← ∅
3 P ′ ← {∀ symbol s ∈ Σ generate a S-prefix πi ∈ P ′}
4 repeat
5 scan input string S
6 count in S the frequency fπi of every S-prefix πi ∈ P ′
7 forall the πi ∈ P ′ do
8 if 0 < fπi ≤M then add πi to P
9 else forall the symbol s ∈ Σ do add πis to P ′

10 remove πi from P ′

11 until P ′ = ∅;
12 sort P in descending fπi order
13 repeat
14 G← ∅
15 add P.head to G and remove the item from P
16 curr ← next item in P
17 while NOT end of P do
18 if fcurr + SUMγi∈G(fγi) ≤M then
19 add curr to G and remove the item from P

20 curr ← next item in P

21 add G to V irtualTrees

22 until P = ∅;
23 return V irtualTrees

Time. By exploiting the geometric sum |Σ| + |Σ|2 + ... +

|Σ|k = Σk+1−1
|Σ|−1

the first loop in lines 4-11 overall takes the

following number of steps:

k=log|Σ|
n
M∑

k=1

(scan(n) + |Σ|k) = log|Σ|
n

M
· scan(n) +

n/M − 1

|Σ| − 1

(1)

We assume comparison-based sorting in line 12 running in
O(n

M
lg n

M
) time. We only provide asymptotic bounds for

the last loop in lines 13-22. Overall it requires fromO((n
|Σ|M)2)

to O((n
M

)2) time. The whole vertical partitioning phase re-
quires

O(n log|Σ|
n

M
+ (

n

M
)2) (2)

time.

I/O. The first loop in lines 4-11 require overall log|Σ|
n
M
scan(n)

block transfers. The internal loop operates in-memory only
because |P | and |P ′| < n

M
and the assumption M2 > n.

The sort in line 12 is an in-memory one because P fits
into the main memory and does not require any I/Os. The
heuristic for virtual tree construction is executed completely
in-memory, because P fits into the main memory. Overall
the vertical partitioning requires

n

B
log|Σ|

n

M
(3)

sequential block transfers.

3.2 Horizontal Partitioning
Algorithm 2 shows the horizontal partitioning algorithm taken
from [6]. Relative suffix array SA[i]1 maps the ith rank of
the suffix in lexicographically ordered list of all the suffixes of
S-prefix p to the position in the original text. SA is originally
initialized to suffix locations of S-prefix p in the text and
gets the final form when sorting the buffered string. ISA[i]2

denotes the inverse suffix array defined as ISA[SA[i]] = i.
Relative longest common prefix array LCP [i]3 contains rel-
ative branching information between the suffix such that
LCP [i] = lcp(T [i−1], T [i])−|p| where lcp denotes the longest
common prefix of two strings.

In line 9 the algorithm determines the string buffer length
range depending on the number of still open paths to the
leafs and the main memory size M . Then, in lines 10-12 the
algorithm fills buffers Buf each of length range in a single
scan of the original text. In the analysis we assume range
to be a constant factor such that sizeof(Buf) = O(M)
and not O(M2). In lines 13-15 an in-memory string sorting
of Buf is involved constructing SA and ISA. Finally in
lines 16-23 the in-memory construction of LCP is done by
calculating the common prefix cp4 of SA[i] and SA[i + 1]
for all i. The number of iterations of the external while
loop depends on the similarity of the strings in Buf . As-
suming random string distribution, the number of uniquely
represented strings in Buf = O(M) is |Σ|range. range thus
bounds the number of iterations to O(log|Σ|M).

Time. We will first calculate the amount of work needed to
be done and then provide parallel time execution. Line 9 re-
quires O(1) work to calculate range and lines 10-12 require
O(M) work to fill the buffers. String sorting takes O(M)
work by using radix sorting. Finally lines 16-23 overall take
O(M) work to calculate common prefixes of all the strings.
The external loop is executed O(log|Σ|M) times leading to
O(M log|Σ|M) overall expected work of the horizontal par-
titioning for the random input text.

Each processor can run its own horizontal partitioning in-
stance for the assigned suffix subtree. This leads to optimal

1SA was denoted as L in the original paper.
2ISA was denoted as I in the original paper.
3LCP was denoted as B in the original paper.
4Common prefix cp was denoted as common S-prefix cs in
the original paper, which is, to our understanding, not cor-
rect.

Algorithm 2: SubTreePrepare

Input: Input string S, S-prefix p
Output: Arrays SA and LCP corresponding suffix

sub-tree Tp
1 SA contains the locations of S-prefix p in string T
2 LCP ← {}
3 ISA← {0, 1, ..., |SA| − 1}
4 A← {0, 0, ..., 0}
5 Buf ← {}
6 P ← {0, 1, ..., |L| − 1}
7 start← |p|
8 while there exist an undefined Buf [i], 1 ≤ i ≤ |SA| − 1 do
9 range← GetRangeOfSymbols

10 for i← 0 to |SA| − 1 do
11 if ISA[i] 6= done then
12 Buf [ISA[i]]←

ReadRange(T, SA[ISA[i]] + start, range) //
ReadRange(T,a,b) reads b symbols of T starting
at position a

13 for every active area AA do
14 Reorder the elements of Buf , P and SA in AA so

that Buf is lexicographically sorted. In the process
maintain the index ISA

15 If two or more elements {a1, ..., at} ∈ AA, 2 ≤ t,
exist such that Buf [a1] = ... = Buf [ai] introduce
for them a new active area

16 for all i such that Buf [i] is not defined,
1 ≤ i ≤ |SA| − 1 do

17 cp is the common prefix of Buf [i− 1] and Buf [i]
18 if |cp| < range then
19 Buf [i]←

(Buf [i− 1][|cp|], Buf [i][|cp|], start+ |cp|)
20 if Buf [i− 1] is defined or i = 1 then
21 Mark ISA[P [i− 1]] and A[i− 1] as done

22 if Buf [i+ 1] is defined or i = [SA]− 1 then
23 Mark ISA[P [i]] and A[i] as done // last

element of an active area

24 start← start+ range

25 return (SA,LCP)

speedup and taking all O(n/M) suffix subtrees into account,
the expected parallel execution time to construct all of them
in parallel is

O(
n

M

M log|Σ|M

p
) = O(

n

p
log|Σ|M) (4)

I/O. Determining range in line 9 requires no I/Os. Lines
10-12 require O(M/B) I/Os to fill the buffers. Lines 13-23
use in-memory sorting and common prefix calculation and
do not impose any I/Os. The overall I/O complexity of the
horizontal partitioning is O(M/B log|Σ|M).

In parallel environment, scans in lines 10-12 can be shared.
To construct all O(n/M) suffix subtrees in parallel, the ex-

pected parallel I/O complexity is

O(
n

pM

M log|Σ|M

B
) = O(

n

pB
log|Σ|M) (5)

parallel block transfers.

4. CONCLUSIONS
In this paper we provided formal analysis for the ERa al-
gorithm, the fastest practical suffix tree construction algo-
rithm. The algorithm runs in two phases: The first one
is executed sequentially and partitions the suffix tree to
smaller suffix subtrees fitting into the main memory whereas
the second phase fills the suffix subtrees in parallel. We
showed the first phase requires O(n log|Σ|

n
M

+ (n
M

)2) time
and O(n

B
log|Σ|

n
M

) sequential block transfers. The second
phase requiresO(n

p
log|Σ|M) parallel time andO(n

pB
log|Σ|M)

parallel block transfers. The suffix tree construction lower
bound is the same as the sorting problem: Ω(n logn) time
and Ω(n

pB
logM/B

n
M

) parallel I/Os by [3]. ERa, despite be-
ing the fastest practical algorithm to date, is not tight.

5. REFERENCES
[1] Arge, L., Goodrich, M. T., Nelson, M., and

Sitchinava, N. Fundamental parallel algorithms for
private-cache chip multiprocessors. In Proceedings of
the 20th annual symposium on Parallelism in
algorithms and architectures - SPAA ’08 (New York,
USA, 2008), ACM Press, p. 197.

[2] Barsky, M., Stege, U., Thomo, A., and Upton, C.
Suffix trees for very large genomic sequences. In
Proceeding of the 18th ACM conference on Information
and knowledge management - CIKM ’09 (New York,
New York, USA, Nov. 2009), ACM Press, p. 1417.

[3] Farach-Colton, M., Ferragina, P., and
Muthukrishnan, S. On the sorting-complexity of
suffix tree construction. Journal of the ACM 47, 6
(Nov. 2000), 987–1011.

[4] Ghoting, A., and Makarychev, K. Indexing
genomic sequences on the IBM Blue Gene. In High
Performance Computing Networking, Storage and
Analysis, Proceedings of the Conference on (2009),
pp. 1–11.

[5] Heinz, S., Zobel, J., and Williams, H. E. Burst
tries: a fast, efficient data structure for string keys.
ACM Transactions on Information Systems 20, 2 (Apr.
2002), 192–223.

[6] Mansour, E., Allam, A., Skiadopoulos, S., and
Kalnis, P. ERA: efficient serial and parallel suffix tree
construction for very long strings. Proceedings of the
VLDB Endowment 5, 1 (2011), 49–60.

[7] Weiner, P. Linear pattern matching algorithms. In
Switching and Automata Theory, 1973. SWAT’08.
IEEE Conference Record of 14th Annual Symposium on
(1973), IEEE, pp. 1–11.

[8] Yue, M. A simple proof of the inequality FFD (L) \leq
11/9 OPT (L) + 1, \forall L for the FFD bin-packing
algorithm. Acta Mathematicae Applicatae Sinica 7, 4
(1991), 321–331.

