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Abstract. Computer systems such as clusters, grids and clouds rely
heavily on techniques for storing vast amounts of unstructured data. No-
tions like performance, availability, scalability and security are among the
main requirements. In this survey we present such a storage – distributed
storage – and describe problems related to the design and implementa-
tion. The emphasis is put on distributed file systems, but we also present
some other forms, such as key-value stores.

1 Introduction

Computer systems that process or store large amounts of data (search engines,
cloud computing applications, data mining applications, scientific computing
etc.) require a high-performance reliable and scalable infrastructure for storing
data. An obvious choice is to build such a system as a distributed system that will
leverage high-speed interconnects, power and storage of single machines. Since
this does not mean we can just distribute a local file system, there is a whole
systems research area dealing with design and implementation of distributed
storage. This paper tries to review the most important contributions of the last
25 years or so combined with some introduction to file systems.

As the title suggests, we are considering storage systems for unstructured
data, that is, systems that don’t use data models. Such systems are distributed
file systems, although there are some variations that do not expose (only) a file
system, and more importantly, are built on top of different architectures.

We first start with introduction to file systems and review some fundamental
papers regarding local file systems. This is followed by an short introduction to
distributed systems. We then move to distributed storage systems, starting with
early DFSs, which is followed by a subsection on changing architecture. Here,
we survey two fundamental systems, Petal and NASD. Further on we consider
shared-disk file systems, mainly popular in high-performance computers and
later move on to object-based systems, probably the most attractive of the time.
Due to using variable-length objects as a lower layer, they can be used to provide
multi-interface (API) storage to clients, so we consider such systems in the last
subsection. We conclude with future work suggestions.



2 Introduction to File Systems

Since the emphasis in this survey will be put on distributed file systems, it is
necessary to first define a notion of a file system (FS), before moving on to
distributed file systems (DFS).

We follow the description of a file system according to [42] although, when
dealing with distributed storage, many authors name key-value stores and other
forms of storage as file systems. In order to differentiate this other types from
the “classical” file system, we call the later a POSIX FS (see below).

A POSIX file system consists of two parts: a collection of files each storing
related data, and a directory structure, which organizes the files and provides
information on them. The later is usually called metadata and can be file size,
date of creation, access control list, extended attributes (xattrs) etc.

The POSIX standard for operating systems also defines FS interface and
behavior. Local file systems mostly follow this standard, whereas DFS often
deviate from it as a result of specific design decisions. Despite this, when a
storage system exposes interface similar to that of a classical FS (hierarchical
directory structure, file names, open/close and read/write operations etc.), even
if not fully compliant, we say that we are dealing with a POSIX FS, or that a
storage provides POSIX interface. This is important since many authors describe
key-value stores and other forms that don’t expose the POSIX interface as file
systems.

It is important to realize that the internal structure of a file is almost always
defined by the user (an application) and not the file system1. To the file system,
the contents of the file are a sequence of bytes, but the operating system can
support different file types. This is sometimes done by using an extension to
the file name, or by special information embedded into a file. However, the
absence of a data model is the main distinction of unstructured storage from
a structured storage (a relational database).

[24] describes an implementation and an upgrade of a classical (local) file
system for Unix OS also known as Unix File System (UFS) or Berkeley Fast
File System. Concepts that the paper describes (from older versions) or intro-
duces are found in modern file system. Among them are a superblock, inodes,
free blocks list etc. Inodes using direct, single-, double- and triple-indirect blocks
for file content allocation are presented. The need for high throughput due to
frequent paging of data in and out of the file system is recognized and addressed
by increasing block size from 512 to 4096 bytes, but still preserving space ef-
ficiency for small files by using block fragments. Some novelties seem trivial,
but are important, such as duplicate copies of a superblock in case of failures.
The locality of accesses is also investigated, for example, a “list directory” com-
mand accesses all of the inodes of one directory. The paper also discusses use of
block-level caches or buffers, the analogy to caches used in DFSs.

1 There are file systems that make distinction between, for example, text and binary
files, or data and program files etc.



[11] presents a file system that uses a write-ahead journal (log). This means
that data is first written to a special part of a file system – the journal. At a
later time (see group commit below), the changes are commited to the file sys-
tem itself on the disk. The use of a journal greatly simplifies crash recovery,
since unsuccessful writes to the file system can be replied when recovering, while
unsuccessful writes to the journal can simply be ignored. At recovery the system
only replays the last portion of the journal, while in non-journaling file system it
would have to check the entire contents of a file system for possibly inconsistent
data. Another novelty the paper presents is the group commit which is a logical
consequence of having a journal. The file system caches several operations to-
gether into a single write. This greatly increases write performance. Of the two
presented concepts, both are derived from database systems.

[33] presents a log-structured file system. It is a step further from a jour-
naling file system since the log itself is used as a file system. Authors claim
that such a system exhibits a performance increase of an order of magnitude for
small-file writes, while matching the performance for large files in comparison to
non-log-structured file systems of the time. The motivation was similar to the
one for journaling file systems but with the intent to avoid double-write penalty
of journaling file systems. The most important issue is managing free space, since
the problem is how to make large extents of free space available for writing after
many deletions and overwrites of small files. The solution is to divide the log into
segments and periodically use segment cleaner (garbage collection technique) to
compress and relocate live data and avoid fragmentation. Even though the most
widely used local file systems are journaling, log-structured file systems became
important with the advent of flash memory storage devices. The JFFS2 and
YAFFS are both log-structured.

A more recent paper is [30]. It analyzes several journaling file systems: ext3,
IBM JFS, ReiserFS andWindows NTFS. The paper presents semantic block-level
analysis (SBA). Authors occupy the file system with carefully chosen workload
patterns and observe not only the time needed but also the sequence of read
and write operations. More important to this survey than analysis itself is the
accompanying description of modern journaling file systems.

3 Distributed Systems

Distributed systems are an important part of modern IT infrastructure. A dis-
tributed system is a collection of loosely coupled processors (nodes, computers,
hosts etc.) (see [42]). This means that processors do not share primary mem-
ory, as oposed to parallel systems. Reasons for building them are usually re-
source sharing, computation speedup, reliability and communication. An ideal
distributed system should exhibit transparency, fault-tolerance and scalability.
Storage systems which will be presented in this survey can be used by parallel
systems as well, but are still generally implemented as distributed systems.

For example, a shared-memory supercomputer (parallel system) can use as a
storage backend a distributed storage system built on a cluster (distributed sys-



tem) of PCs. Or it may use a shared-disk file system that utilizes a distributed
locking mechanism. In both these examples we are dealing with problems re-
lated to distributed computing. However, due to lack of space we will not cover
the area, but just an exemplary issue that arises when designing a distributed
storage. For a broader coverage, see [44] or [23].

An important problem with distributed systems is how can the participat-
ing machines reach an agreement on a value which was proposed by several
participants. This is also called a consensus problem. Seminal work was done
by Leslie Lamport with the introduction of Paxos protocol ([19]). Consensus
is important in order to implement a replicated state-machine, a technique also
proposed by Lamport on how to implement faul-tolerant distributed systems.
State-machine replication was further reviewed in [38]. Paxos is used by a few
systems we describe later, among them Google’s Chubby locking service, Ceph,
a fault-tolerant DFS. The main difference between Paxos and other consensus
protocols, such as three-phase commit is it’s resilience to failures. In ordinary
commit protocols, if one node does not agree to the proposed value, the value
is rejected, however, in paxos, only a majority is needed, thus paxos exhibits
resilience to failure of almost half of the nodes.

An also important issue with distributes systems is that of byzantine fault-
tolerance ([20]). Byzantine failures are ones where participants can fail with-
out stopping. This means they continue working but exhibit erratic or possibly
malicious behaviour. Therefore, designing byzantine fault-tolerant distributed
systems is a complex task.

4 Distributed (Unstructured) Storage

In this section we survey several distributed storage systems. Some authors name
all of these systems “file systems”, even though some do not expose a POSIX
interface. Furthermore, DFSs are sometimes called network, cluster, cloud, grid
or parallel file systems among others. These expressions are sometimes used for
a specific set of DFSs, but not necessarily.

4.1 Early Distributed File Systems

NFS ([35][43]) (Network File System) is probably the most widely used DFS. It
was developed at Sun Microsystems in the mid-80s for use within groups of Sun
workstations. It could be argued whether it is really a DFS, mainly due to lack
of scalability. According to [42], a DFS is any file system where clients, servers
and storage devices are dispersed among the machines of a distributed system.
By this definition, NFS is a DFS, although it does not provide fault-tolerance,
replication, parallel access and similar services provided by modern DFSs. Until
version 4 (finalized in 2003) NFS was a stateless protocol. Client accessed remote
files the same way as local files. NFSv4 ([40]) introduced states, client caches and
mandatory locking (for non-UNIX systems). When client caches a file, the server
delegates the responsibility for this particular file to the client, and all the other



client, when accessing the particular file, are redirected by the server to the
delegated client. NFS 4.1 ([41]), also known as pNFS (parallel NFS), introduces
separation of meta-data and data. It defines file-, block- and object-level file
layouts, the details of which are left to particular implementations.

File locking is in NFSv4 implemented with leases, where a client is granted
a lease on a file for certain period of time and if it does not renew the lease, the
lock is removed from a file. This is important in case of client failures, where
file locks could otherwise pertain until the restart of the server. The technique
of leases was introduced in [10].

AFS (Andrew File System), introduced in [26] and further discussed in [14],
is one of the most studied DFSs. It was developed at Carnegie Mellon University,
as part of the Andrew Project, another project to develop a distributed operat-
ing system (see Sprite). Authors emphasize the issue of scalability in comparison
with NFS. If the later was designed to be used within smaller groups of worksta-
tions, authors of AFS targeted several thousand machines (and possibly more).
One of the novelties is heavy use of caches and a callback mechanism. Callbacks
provide cache consistency in a way later adopted by NFSv4, where callbacks are
named delegations. There are two components in AFS, called Vice and Venus.
Vice are the storage servers holding the actual data. These servers do not use
local file systems for storage, but rather save data to raw partitions for perfor-
mance reasons. They do, however, use local file system for storing metadata.
Venus is a client-side component responsible for handling cache and contact-
ing venus servers as needed. AFS caches entire files from servers. Only when
opening or closing files is there any communication between clients and servers.
Clients see a uniform name space. The distribution is achieved by partitioning
name space into sub-trees and choosing a dedicated server to be responsible for
a particular sub-tree. Sub-trees that contain frequently read, but rarely modi-
fied, files can have read-only replicas at other servers. These copies are created
manually by system administrators. They are primarily used for system files in
order to enhance availability and to distribute server load. AFS also provides
security (ACLs, Kerberos client authentication) and a limited form of snapshots
implemented as a copy-on-write backup mechanism.

In [28] authors describe The Sprite network operating system, developed at
UC, Berkeley. An essential part of it is a network file system. The authors claim
their system improves on transparency with regards to other systems, such as
NFS. An important difference to NFS is that all of the machines should see the
same directory hierarchy. Another important novelty is usage of prefix tables that
are similar to IP routing tables. A client looks up a file using a full path name
by finding the longest prefix match in the prefix table, and then contacting the
server pointed to by the appropriate table entry. This server then strips away
the prefix and continues to search directory hierarchy in order to locate the
appropriate file. The third important contribution of this system is use of block-
level in-memory client and server caches. AFS also uses caches, but they are
stored on local disks.



[22], a survey paper, is one of the first to make the point, that a DFS should
not be just a local file system extended to work over the network, but should
be implemented as a distributed system with fault-tolerance and scalability in
mind. Written in 1990, it discusses DFSs of the time – Unix United, Locus, Sun
NFS, AFS and Sprite – but first presents DFS design issues. Authors name a
local file system as conventional. Authors point out that any centralized solution
has a single point of failure (SPOF) and a performance bottleneck. The solution
is for a DFS to have multiple and independent servers controlling multiple and
independent storage devices. The authors discuss several aspects of a DFS: loca-
tion transparency, naming scheme and implementation details. The later include
pathname translations, mount mechanisms and hints. Authors also discuss shar-
ing semantics, a topic of interest for the clients, especially in large installations
where simultaneous accesses to files are common. Caching issues (granularity,
location, consistency etc.) are investigated along with fault-tolerance. The later
is described as a functionality allowing client access to files in the presence of
link, server or storage device failures. Authors also mention usage of file replicas
for better performance, since DFS can service a client’s request from the nearest
replica.

[13] presents WAFL (Write Anywhere File Layout) protocol, developed by
Netapp company. WAFL is not a DFS, but a file system layer used by Netapp
in a NFS appliance. A distinguishing feature are snapshots, that provide read-
only copies of files. WAFL holds up to 20 snapshots at a time, and periodically
deletes them and creates new ones. Snapshotting is based on a copy-on-write
technique, where, when creating a snapshot, the root inode is copied, and later
when a block is changed, WAFL copies it and updates the pointers. All of the
meta-data is contained in 3 special files, holding inodes, free blocks map and
free inodes map. This is where WAFL gets its name - write anywhere, since
because metadata is written in files, blocks of this files can be written anywhere
on a disk, specifically in the same locations as the files contents, thus exploiting
temporal locality and scheduling writes in a way to decrease RAID penalty of
multiple writes due to parity.

[12] introduces Zebra Striped Network File System. It was designed as a
replacement to be used in Stripe distributed OS. The main idea is to stripe
data of one file among several servers while using parity (similar to RAID)
to defend against node failures. It is not the first DFS to employ striping to
increase large-file performance necessary for supercomputing applications, but
it also employs techniques borrowed from log-structured file systems ([33]) in
order to increase small-file performance by batching several small writes to a log,
and then striping this log over several machines. Zebra also decouples metadata
paths from data paths with the introduction of file managers. They behave like
Stripe file servers, only that the contents of the file are pointers to file blocks
stored on storage servers. Therefore, there are four components in a Zebra file
system: clients, storage servers, file managers (metadata) and cleaners. The later
are used to recover free space as a result of a log-based approach. The RAID-
like technique is important since it enables installation of such a system using



commodity hardware, and presents a second alternative to faul-tolerance, the
first being file replication. RAID-like techniques are increasingly important in
modern DFSs, since plain file replication is inadequate due to high storage costs.

[2] introduces a paradigm shift from centralized servers (dedicated to a par-
ticular role) to a design, where all the server machines (cooperating as peers)
can service all file system requests. This is very important for scalability, high-
performance and fault-tolerance. Authors introduce a prototype DFS, called
xFS, which borrows log-structured techniques from Zebra. xFS has the same
components as Zebra, namely clients, storage servers, file managers and clean-
ers, but provides more flexibility as to which components does a particular ma-
chine run. There are some restrictions, for example, managers and cleaners must
also be clients. xFS also introduces cooperative caching where portions of client
memory are used as a global cache. The paper claims that a 32-node installa-
tion with 32 clients exhibits almost the same performance as it would if there
were only one client. An important notion is that of stripe groups. They bound
the striping to a particular group of servers which is important for large-scale
installations and in contrast to Zebra. Since stripe groups seldom change, they
are replicated globally (to all the machines). Stripe groups a similar to a concept
of placement groups which we see later in Ceph ([34]).

[36] is an article on the evolution of the Coda DFS. Coda has its origins in
the AFS file system and has been in development since 1987. Some of the most
important additions are a better fault-tolerance and a support for disconnected
operation (interesting for mobile computing). Since Coda is a descendant of AFS
it already caches entire files. But when server link failures occur, clients keep
writing changes to local disk, and when the link is up again, they try to replay all
the changes to the appropriate servers. Of course, conflicts can arise, sometimes
they can be resolved automatically, others, administrator intervention is needed.
This is where application specific resolution comes into play. Authors suggest
giving application developers the possibility to write app-specific software which
the Coda can invoke to resolve conflicts. As far as replications is concerned,
Coda uses so called volume groups to replicated the data. Versions are used in
order to identify servers with out-of-date data. In case of failures, servers can
easily be reintroduced with a few administrator commands. The systems takes
care that the server gets the appropriate data copied to it upon rejoining the
cluster. Coda holds volume and directory information, access control lists and
file attribute information in raw partitions. These are accessed through a log
based recoverable virtual memory package (RVM) for speed and consistency.
Only file data resides in the files in server partitions. RVM has built in support
for transactions - this means that in case of a server crash the system can be
restored to a consistent state without much effort.

4.2 Changing architecture

[8] discusses differences between network-attached storage (NAS) and storage-
area networks (SAN). NAS is a storage system that provides user access to
files (think of file open, file close, file read operatons) where users and



NAS systems are separated by a network. Similarly, SAN provides users the
access to block device (think of get(block number), put(block number,data)
operations) where users and SAN systems are separated by a network. To put
it differently, NAS places a network between user and file system, while SAN
places a network between file system and block device. According to [8], NAS
systems are becoming more specialized (NAS clusters), while SAN systems are
becoming more generalized (iSCSI), thus, these two approaches are converging.

Petal is introduced in [21]. It provides clients a block-oriented interface ie.,
virtual disks. Petal scales by splitting the controller function over a cluster of
controllers, any one of which had access to consistent global state. According
to [8], Petal could be viewed as a RAID system implemented on a symmetric
multiprocessor, though it uses Lamport’s Paxos algorithm for distributed con-
sensus (see [19]) instead of shared memory for global state. Even though Petal
was designed in 1996, it is interesting for use in virtual environments where we
would like to provide block devices to particular virtual machines, so they can
create local file systems on top of them. The idea of distributed virtual disks is
later seen with Ceph (Rados Block Device), a system that provide distributed
virtual disks as a layer on top of a different storage.

4.3 Shared-disk file systems

Shared-disk file systems (also known as cluster file systems) are a type of DFSs
where clients share access to the same block-level device (physical or virtual),
usually exposed by a SAN device. Clients all have shared-disk FS software with
which they access shared storage. An important part of such software is a dis-
tributed lock manager (DLM) in order to control concurrent access to shared
storage.

Most distributed file systems implement a distributed lock manager (DLM)
similar to the one used in DEC’s VAX/VMS system and introduced in [17] in
1986. The VMS lock manager allows cooperating processes to define shared re-
sources and synchronize access to those resources. A resource can be any object
an application cares to define. Each resource has a user-defined name by which
it is referenced. The lock manager provides basic synchronization services to re-
quest a lock and release a lock. Each lock request specifies a locking mode, such
as exclusive access, protected read, concurrent read, concurrent write, null, etc.
If a process requests a lock that is incompatible with existing locks, the The
data is divided into two parts: the resource lock descriptions and the resource
lock directory system. Both are distributed. Each resource has a master node
responsible for granting locks on the resource. The master maintains a list of
granted locks and a queue of waiting requests for that resource. The second part
of the database, the resource directory system, maps a resource name into the
name of the master node for that resource. The directory database is distributed
among nodes willing to share this overhead. Given a resource name, a node can
trivially compute the responsible directory as a function of the name string and
the number of directory nodes.



Another, but slightly different example of a DLM, is Chubby ([5]), a dis-
tributed lock service used by Google’s distributed systems such as MapReduce,
GFS (see below) and BigTable. The design emphasis is on scalability and relia-
bility, and not high performance. Chubby implements locks, a reliable small-file
storage system, and a session/lease mechanism in a single service.

Frangipani [45] is a shared-disk file system built on top of Petal. The disk
being shared is not physical, but a virtual one provided by Petal. It consists of
the following main components: Petal Server, Distributed Locking Service and
the Frangipani File Server Module. The Petal Server is responsible for providing
a common virtual disk interface to storage that is distributed in nature. The
Petal device driver mimics the behaviour of a local disk, hiding its distributed
nature. The Distributed Locking Service is responsible for enforcing consistency,
thus changes made to the same block of data by multiple Frangipani servers are
serialised ensuring data is always kept in a consistent state. The are two main
types of locks, a read lock and a write lock. A read lock allows a server to read
the data associated with the lock and cache it locally. If it is asked to release
its lock, it must invalidate its cache. A write lock permits the server to read
and write to the associated data. The third component is the Frangipani File
Server Module, which interfaces with the kernel and the Petal device driver to
provide a file system-like interface. Frangipani File Server communicates with
the Distributed Locking Service to acquire locks and ensure consistency, and
with Petal Servers for block-level storage capability.

Another well-know and commercially successful shared-disk file system is
GPFS ([37]), General Parallel File System, from IBM. It is based on an earlier
file system, called Vesta. One of distinct features of GPFS is byte-range locking
which enables multiple clients to write to the same file in parallel and without
compromising consistency. As the name suggests, GPFS supports parallel access
which is achieved by striping data at a block level. Similar to VMS DLM, node
wishing to write to a file contacts a designated node in order to obtain lock.
There is also a designated allocation manager, a node charged with managing
and allocating free space. GPFS also tracks failed disks or failed nodes. In case of
communication failures, GPFS fences failed nodes so they cannot access shared
disks. Since GPFS pays special attention to parallelism and scalability, it is used
on some of the fastest supercomputers.

Other important shared-disk file systems include Oracle’s OCFS/OCFS2
(Oracle Cluster File System), Redhat’s GFS/GFS2 (Global File System) and
Vmware’s VMFS (Virtual Machine File System).

4.4 Object-based file systems

One of the main ideas of object-based file systems (but not specific to them, since
it is also present in some shared-disk FSs) is the separation of metadata and
data. By using variable-length objects (with attributes) instead of blocks, we
construct an object storage system that takes care of parallel access, replication
(or erasure coding) etc. at the object level. These objects are stored locally by the
object servers (often called object-based storage devices - OSD) usually as



files on a local FS such as ext4, xfs, zfs etc. We then implement POSIX semantics
as a layer on top of object storage. Or we could implement some other API, such
as a key-value store. Typical operation is the following. The client contacts a
metadata server when it wants to perform a file operation. The metadata server
sends a layout (map) of where the data is located and the client communicates
with the object storage nodes directly and possibly in parallel.

The seminal work on object-based storage occurred at Carnegie Mellon Uni-
versity’s Parallel Data Lab (PDL) with the Network-Attached Secure Disks
(NASD) project ([9]), where they emphasize variable-length data objects. NASD
systems use central policy server (possibly a cluster of servers), while most com-
mands and data transfers are directly between device and client. Upon approval
by the central server, clients can access (directly and in parallel) all devices con-
taining data of interest. There are many ways to ensure that the server in such
asymmetric systems controls client access to storage. The most common trusts
client operating systems to request and cache metadata as is done in Zebra,
where each client temporarily functions as a server for the files whose metadata
it has in cache. By storing file metadata in the device, NASD offers a file in-
terface abstraction. However, it does not offer directory operations, because it
assumes data is spread over multiple NASDs and that the file system’s direc-
tories are globally defined. Nevertheless, a NASD policy server stores directory
information in NASD files that clients can parse without the device recognizing
the difference between a regular file and a directory.

Lustre ([39]) is an object-based DFS which has been designed for use in high-
performance computing. Lustre is sometimes called a parallel file system since it
supports striping data across several storage nodes and thus providing parallel
access. There are two types of components in a Lustre cluster. Metadata servers
contain the file system’s directory layout, permissions and extended attributes for
each object. First versions employed only one (and a backup) metadata server,
later versions are designed to use many in order to distribute the load. Object
Storage Targets are responsible for the storage and transfer of actual file data.
Both types of service node can operate in pairs which automatically take over
for each other in the event of failure. Each also runs an instance of the Lustre
distributed lock manager which is based on the VAX/VMS design we described
earlier. Lustre stores data as objects called containers that are very similar to
files, but are not part of a directory tree.

PVFS (Parallel Virtual File System) is introduced in [6]. Similar to other
object-based DFSs, PVFS has metadata servers and data servers. Since version
2, PVFS supports multiple metadata servers. The word virtual in the name
means that it doesn’t write directly to the object storage devices, but instead
the data resides in another file systems that does the actual I/O operations to
the storage devices. When data is written to PVFS, it is sent to the underlying
file system in objects. The underlying file system then writes the data to the
storage. PVFS allocates objects in a round-robin fashion (compare to CRUSH
algorithm in Ceph, which we describe later). Another similar and modern file
system is PanFS ([47]), developed by Panasas.



Possibly the most discussed modern DFS is the Google file system ([7]).
Despite this fact, it was designed for a set of specific usage patterns, particularly
writing large files which are seldom modified. It is a backbone for the MapReduce
and BigTable platforms. Open-source equivalents are Apache Hadoop and its
filesystem, HDFS. The interface it provides is not strict POSIX compliant but
looks similar. There is also no caching involved at either side, client or server.
GFS is designed around two types of components. The metadata server is called
a master. According to the original paper, there is a single master, although it is
quite possible that the GFS in use at Google today, supports multiple masters.
Master’s state is replicated on backup machines, in order to provide fast recovery
after a crash. Object data servers are called chunkservers. GFS uses very large
(64MB) objects called chunks. Chunkservers store chunks and provide additional
integrity by calculating and storing checksums for 64 kb large blocks of chunks.
Parallel access to multiple chunks which are replicated on multiple chunkservers
is possible. GFS supports snapshots. Like AFS, it uses copy-on-write mechanism.
When the master receives request for a snapshot it first revokes any outstanding
leases on the chunks in the files it is about to snapshot. Then it logs the operation
to disk, and applies this log to its in-memory state by duplicating the metadata
for the source file or directory tree. The newly created snap- shot files point to
the same chunks as the source files. The first time a client wants to write to a
chunk after the snapshot operation, a copy is made on the chunkserver holding
the original chunk, thus avoiding network transfer.

4.5 A Multi-interface Example

Before presenting the last DFS, Ceph, let us first look into APIs (interfaces)
for storing unstructured data. Until now, we mainly dealt with file systems that
provided POSIX or near-POSIX API to the user. However, we did encounter
two examples where there was a different bottom layer on top of which was (or
could be) a POSIX FS. One such example was Petal, where the bottom layer
provided virtual block devices on top of witch we could design a shared-disk
file system. A second example were object-based file systems, where the bottom
layer was a distributed object store on top of which there was a POSIX FS layer.
The question presents – is this the optimal API? How good is the hierarchical
namespace? Why not just have key-value mappings? Can we implement key-
value stores easily on top of object stores? How much of “on-top-of” layering
makes sense and doesn’t hinder performance? Or could we maybe extend POSIX
API for better indexing and querying. The choice of interface influences the
system design as well. If we do not require POSIX FS interface, a lot of metadata
handling issues are gone. One such example is Facebook’s photo storage system
called Haystack, presented in [3], which implements an object-based storage with
a very specific application in mind.

A distributed file system that offers multiple APIs is Ceph ([34]). It is actu-
ally a distributed object storage, on top of which are block-, object- and file-level
access APIs. A main component of Ceph is RADOS ([46]), a reliable autonomic



distributed object store that provides object-based storage. In Ceph, responsi-
bility for data migration, replication, failure detection and failure recovery is
with RADOS. This enables Ceph to expose the storage through three different
interfaces – rados block devices (similar to Petal virtual disks), POSIX FS and
key-value store, similar to Amazon S3 ([1]) and Openstack Swift ([27]), which
can be exposed through HTTP-based protocols (radosgw) or accessed by a li-
brados library. Architecture is shown in figure 1 while cluster layout, which is
an example of typical object-based file system with separation of metadata and
data paths, is shown in figure 2. In the paper, RADOS uses a special local file

Fig. 1. Architecture of Ceph.

Fig. 2. Layout of a Ceph system.

system to store objects on OSDs, called EBOFS. However, currently available



implementations use already existing local file systems. The authors discovered
that, btrfs, a local file system currently still in development, offers all the prop-
erties needed. At the moment they advise the use of XFS, although any other
local FS that supports extended attributes could be used. Ceph cluster consists
of metadata servers (MDSs), object-storage devices (OSDs) and cluster moni-
tors (MONs). The later run a variant of Paxos ([19]) protocol in order to achieve
consensus on the state of the cluster. State in this case is a cluster map, a sort of
cluster description. Due to Paxos’ need for majority of votes, there always has to
be an odd number of MONs. In contrast to most other object-based file systems
which replace long per-file block lists with shorter object lists, Ceph eliminates
allocation lists entirely. A special-purpose data distribution function CRUSH
maps objects to storage devices. This allows any node to calculate (rather than
look up) the name and location of objects, thus reducing the metadata cluster
workload. CRUSH uses cluster map, but this map is a fairly static structure and
changes only when nodes join or leave the cluster. Since metadata operations
make up as much as half of typical POSIX file system workloads ([32]) metadata
management is critical to overall system performance. For the purpose of provid-
ing POSIX interface, Ceph uses dynamic subtree partitioning which distributes
responsibility for managing the file system namespace hierarchy among tens or
even hundreds of MDSs.

A similar architecture (shown on figure 3) to that of Ceph is the one used
by parallel NFS, also called pNFS ([41]) which we briefly mentioned earlier in
the paper when describing classical NFS. However, here, the pNFS takes care
for the metadata and appropriate communication with storage devices regarding
this metadata. Data paths have to be taken care of separately, since with pNFS,
the data does not pass through the NFS server. Clients and the data storage
system communicate directly through block-, file- or object-based protocols.

Let us briefly mention two other examples. A similar approach to placement
calculation (instead of look up) is taken by GlusterFS ([31]), a modern DFS
developed with support from Redhat.

Another active object-based DFS is XtreemFS ([15]), developed with fund-
ing from European Union as a part of the XtreemOS distributed operating sys-
tem. It uses a lease protocol ([16]) based on Paxos in order to coordinate leases
in a fault-tolerant way.

5 Conclusion and Future work

As promised we surveyed some of the most important work needed to understand
modern distributed file systems. Since there a plenty such systems, we tried to
mention only some of the more important ones, but some also important were
probably left out.

Also, since we were dealing with unstructured storage, we did not look into
semi-structured storage systems, mainly NoSQL databases although future re-
search might lead us into that direction. Key-value stores – not in a NoSQL
sense, but an Amazon S3 sense – were mentioned where they were provided as



Fig. 3. Architecture of pNFS.

an additional interface or access method. Since there aren’t many non-NoSQL
key-value systems around and not much is known about ones that are (Amazon
S3), we did not address them separately.

Here we list some of the future work. Mainly it is about going deeper into
existing systems and dealing with specific issues. Some of them are the following:

– A better review of security mechanisms. A survey article [25] deals with
decentralized access control in DFSs .

– A review of wide-area distributed file systems, such as OceanStore ([18]) and
Farsite ([4]).

– Problem of deduplication. At what level (block, object, file or some other)
do we do it an how.

– Adequacy of TCP protocol for transfers.
– A completely different API, specifically for indexing and searching. How does

it change the architecture and does it reach into structured world.
– How does virtualization fit into all this? What kinds of file systems are the

most appropriate, should VMs be aware of using DFSs and “act accordingly”.
– Erasure codes as an alternative to n-way replication.
– Replica placement strategies.
– Replacing block-devices (HDDs) on storage servers with RAM – RAMcloud

([29]).
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