
UNIVERSITY OF LJUBLJANA

FACULTY OF COMPUTER AND INFORMATION SCIENCE

BELLMAN FORD ALGORITHM USING HADOOP
MAP REDUCE

Author: Luka Golinar

Mentor: Matevž Jekovec

Date: 25.09.2014

1



1. INTRODUCTION

The technology of today is all about fast data transfer with as less effort
and time as possible. We strive to make programs that are as responsive
as possible and make for a great end-user experience. Imagine you having
a bunch of computer servers and would like to know which one is the clos-
est, what route to take to get to each and every one of them the fastest
and cheapest way possible. How can we accomplish this? Introducing the
Bellman-Ford (Sometimes also called Bellman-Ford-Moore) algorithm. Sim-
ilar to Dijkstra’s algorithm, it calculates the shortest path from a source ver-
tex to all the other vertices in a weighted, directional graph. It runs slower
than Dijsktra, but it’s more versatile, as it enables negative circle detection.

Worst case performance:

Dijkstra Bellman-Ford

O(|V | ∗ |E|) O(|E|+ |V |log|V |)

But can we make a better, faster algorithm, or improve the existing ones?

2



2. BELLMAN-FORD

First, I’d like to say a word or two about the algorithm itself. Bellman-
Ford uses the technique of relaxation. First we expand all the nodes and
set the value of the source node to 0 and all the rest to infinity (or a max
possible value in our observatory environment). Then we relax all the edges
repeatedly from the source vertex, until all the nodes are visited. We ex-
pand each node and set it’s value depending on the value of the edge and
the value from the node we were expanding. The code below is a pseudo
code demonstrating the algorithm in action.

3



function BellmanFord(list vertices, list edges, vertex source)

::weight[],predecessor[]

// This implementation takes in a graph, represented as
// lists of vertices and edges, and fills two arrays
// (weight and predecessor) with shortest-path
// (less cost/weight/metric) information

// Step 1: initialize graph
for each vertex v in vertices: do

if v is source then
weight[v] := 0;

else
weight[v] := infinity

end
predecessor[v] := null;

end
// Step 2: relax edges repeatedly
for i from 1 to size(vertices)-1: do

for each edge (u, v) with weight w in edges: do
if weight[u] + w ¡ weight[v]: then

weight[v] := weight[u] + w;
predecessor[v] := u;

else

end

end

end
// Step 3: check for negative-weight cycles
for each edge (u, v) with weight w in edges: do

if weight[u] + w ¡ weight[v]: then
error ”Graph contains a negative-weight cycle”;

else

end

end
return weight[], predecessor[];

4



3. INTRODUCING HADOOP MAP REDUCE

Imagine having tens of thousands of nodes. Computing the paths from
each of them would take a lot of time. Thus, map reduce! I tried Bellman
Ford algorithm with both sequential version and the map reduce version. I
used the Hadoop implementation of the technique.

So how does map reduce actually work? Map reduce fits into Big data
concept of saving a huge amount of data, replacing the standard SQL table
oriented database system. Map reduce has a few stages: Splitting, map-
ping, shuffling and reducing. Mapping and reducing are the two stages that
are going to be important for us. The below diagram shows a word count
program making use of map reduce.

Figure 1: The process of counting words using map reduce

5



4. HADDOOP AND BELLMAN-FORD

Implementing a program to work along side Hadoop is pretty easy. We
will be using Single Node setup. This means everything is running on one
local machine. There are several other possibilities of using hadoop, like
cluster setup (the main idea behind hadoop). This means, that we have one
machine designated as the NameNode and another machine as the Resouce-
Manager. These are the masters. The rest of the machines in the cluster
are slaves and act both as DataNodes and NodeManager. I, however, won’t
be going too much into details about cluster setup.

Lets start implementing BF into hadoop.

• Requirements:

– I used ubuntu 14.04 as my OS, but any UNIX based system will
do

– Java SDK with Eclipse installed

– Hadoop up and running (single node setup, of course)

I will not be going into details of how to install hadoop and eclipse with
Java onto your machine, as there are several tutorials on the web (link in
the reference page). Once you have all the requirements, you are all set to
go. Hadoop-a-loop!

Figure 2: Local daemons running.

6



4.1 PROBLEMS

The hadoop official site gives us an implementation of a simple program
called WordCount, simulating Figure 1. But how does it work? We take a
text file (a book, for example) and in the map stage, we read line after line.
Afterwards we send every read word along side its hard coded value of 1
to the reducer stage, which just increments the values. The communication
between the mapper and the reducer is always in form K, V. K standing for
key and V for value.

Figure 3: The output file after our sample word count program.

So then how can we represent a graph data structure in such a way?

7



4.2 SOLUTION: ITERATIVE HADOOP MAP REDUCE

So the idea is this: For each node expansion mentioned earlier in the BF
algorithm, we will make use of one iteration of map and reduce(and all the
other not mentioned stages). We will represent our graph data in the fol-
lowing way:

ID | EDGES | EDGES_WEIGHT | DISTANCE_FROM_SOURCE | NODE_COLOR

Our key in this case is going to be the ID of the node and the value a
Text type of everything else in the line. So let’s say we have the following
structure:

0 1,2,3 5,8,-4 0 GRAY

1 0 -2 Integer.MAX_VALUE WHITE

2 3,1 9,-3 Integer.MAX_VALUE WHITE

3 1,4 7,2 Integer.MAX_VALUE WHITE

4 2,0 7,6 Integer.MAX_VALUE WHITE

This would translate in the graph shown below:

Figure 4: Graph visualization

8



Like mentioned before, the first column is the ID, separated by a tab
are the edges connected to our node. The next value, this time separated
by one space character are the weights corresponding by position for each
of the edges in column 2. The next value is the max value we assigns every
value. This is the infinity value I was talking about before. Lastly, the color
tells us whether or not the node has been visited yet.

• WHITE: Not yet visited node.

• GRAY: Already visited but not expanded node.

• BLACK: We expanded this node and are now done with it.

So if we take our graph and run it in hadoop we will need 3 iterations
for hadoop to correctly calculate the shortest paths. This basically means,
that we will gradually expand node after node. First, we will look at every
node with color GRAY, set all it’s edges equally to color GRAY and send
the result (once again, ID as the key and all the rest as a Text value) to
the reduce map. The mapper emits two nodes with the same ID. One that
has NULL edges and one that does. The reducer job is then to merge these
two nodes into one node with not NULL edges and the right distance. The
result is then written to a text output. If we simulate this on a real life
graph, each iteration can represent a node expansion. So in this case, we
will expand the vertex 0 and set its edges to color GRAY.

The first iteration then gives us the following result:

0 1,2,3 5,8,-4 0 BLACK

1 0 -2 5 GRAY

2 3,1 9,-3 8 GRAY

3 1,4 7,2 -4 GRAY

4 2,0 7,6 2147483647 WHITE

We can see, that node 1, 2 and 3 are coloured GRAY, because they are
connected to node 0. In the second iteration we repeat step one, described
above. We read line by line of this new file that was given as an output of the
first iteration and check for any GRAY nodes. We then emit all the GRAY
nodes as BLACK nodes and expand their edges setting the colour from
WHITE to GRAY. If the nodes colour to be expanded is set to BLACK, we
only look at the distance and change it accordingly. This repeats until all the
nodes are either coloured BLACK or WHITE(if the graph is not connected).

9



/* If the node is GREY, we emit all of the node edges */

if (node.getColor() == Node.Color.GRAY) {

int counter = 0;

for (int v : node.getEdges()) {

Node vnode = new Node(v);

int w_e = node.getWeights().get(counter);

/* Set the distance of the edges -- Main BellmanFord

Algorithm */

if(vnode.getDistance() > node.getDistance() + w_e)

vnode.setDistance(node.getDistance() + w_e);

counter++;

/* Set node as visited */

vnode.setColor(Node.Color.GRAY);

utput.collect(new IntWritable(vnode.getId()), new

Text(vnode.toString()));

}

/* We’re done with this node now, color it BLACK */

node.setColor(Node.Color.BLACK);

}

/* We always emit the input node. If it was GREY, we color it

BLACK */

output.collect(new IntWritable(node.getId()), new

Text(node.toString()));

After the second and the third iteration we get the following result.

0 1,2,3 5,8,-4 0 BLACK

1 0 -2 3 BLACK

2 3,1 9,-3 5 BLACK

3 1,4 7,2 -4 BLACK

4 2,0 7,6 -2 BLACK

Meaning the distances from node 0 are 1:3, 2:5, 3:-4 and 4:-2. If we do a
quick calculation by hand on the following graph, we can see that the results
are indeed correct.

I have used a hard-coded variable to tell hadoop how many times it has
to iterate, but since a recent patch, we can implement global counters that
do tell hadoop when to stop. I have yet to make use of that feature in my
program.

10



5. RESULTS

In this task, we’ve tried to make use of parallel processing to try and
speed-up the calculation of shortest paths Bellman Ford does. If we have
a bunch of computers that all together do data computation we ought to,
in the end, get a much faster calculation of really big graphs. But is that
really the case?

First, I tried to run the BF algorithm with the standard sequential version
and got the following results:

Figure 5: Sequential version measurments.

We can clearly see that time gradually grows with the number of given
nodes. With 100K nodes it takes a very long time, to calculate the shortest
paths to all of them.

11



Now let’s take a look at the measurements in parallel version. There are
several things we can measure in hadoop. If we take a look at CPU time,
shown in the picture below, we can see that it’s clearly a lot more than the
standard version.

Figure 6: An example of the HDFS GUI data interface.

But we should take note, that CPU time consists with both the reducer
stage and the map stage (which basically reads all the data from a input file
line by line and then passes it to the Reduce stage). The main algorithm
happens in the latter. So how much is the real time used to calculate all
these paths?

12



The graph in Figure 7. shows the average times of both the map and
reduce function and their total.

Figure 7: One iteration of parallel processing.

I didn’t display the measurements for 10 nodes, as I found them to be
quite similar to 100 or even slower, which I find pretty peculiar. We can
see, that the more nodes we have, the bigger the difference between the first
and the second graph. An astute reader would’ve noticed, that the last two
numbers of map and reduce don’t quite add up to the total sum. The reason
behind this is, that map always makes two tasks. Like I explained earlier
we always emit two nodes with the same ID to the reduce stage. Therefore,
the time is doubled.

13



COMPARISON

A more detailed comparison between the two methods. I used the total
sum of both map and reduce stage to represent the parallel, hadoop version.

Figure 8: Comparison between the two methods.

14



5. CONCLUSION

With the implementation of the sequential version, the Bellman Ford al-
gorithm took a pretty decent time to complete all the path calculations. I
find it really weird, though, that the time it took for the parallel version
to complete blew sky-high. It took nearly five minutes to calculate a graph
with 50 nodes. The measurements in Figure 8 demonstrate one sole iteration
of our algorithm. Here we do have to take note, that for every iteration, the
algorithm goes through the whole file and checks if there are any non visited
nodes (nodes coloured GRAY), which it can expand. In conclusion, I can
not firmly state that the parallel version is either slower nor faster than the
sequential. Further testing would be needed.

15



6. REFERENCES

Ubuntu download page

http://www.ubuntu.com/

Eclipse and Java SDK

https://www.eclipse.org/

http://www.oracle.com/technetwork/java/javase/downloads/

Hadoop

Great hadoop tutorials with some basic informations, how to setup
hadoop and how to develop applications.

https://www.youtube.com/channel/UCnuZg1aSJxR0ZRgNvftqCyA

Hadoop counters:

http://hadoop.apache.org/docs/r2.2.0/api/org/apache/hadoop/mapred/

Counters.html

http://hadooptutorial.wikispaces.com/Iterative+MapReduce+and+

Counters

16

http://www.ubuntu.com/
https://www.eclipse.org/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.youtube.com/channel/UCnuZg1aSJxR0ZRgNvftqCyA
http://hadoop.apache.org/docs/r2.2.0/api/org/apache/hadoop/mapred/Counters.html
http://hadoop.apache.org/docs/r2.2.0/api/org/apache/hadoop/mapred/Counters.html
http://hadooptutorial.wikispaces.com/Iterative+MapReduce+and+Counters
http://hadooptutorial.wikispaces.com/Iterative+MapReduce+and+Counters

