
Module 7: Dictionaries for Multi-Dimensional Data

CS 240 - Data Structures and Data Management

Jason Hinek and Arne Storjohann
Based on lecture notes by R. Dorrigiv and D. Roche

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2012

Hinek & Storjohann (CS, UW) CS240 - Module 7 Winter 2012 1 / 22

Multi-Dimensional Data

Various applications
I Attributes of a product (laptop: price, screen size, processor speed,

RAM, hard drive,· · ·)
I Attributes of an employee (name, age, salary,· · ·)

Dictionary for multi-dimensional data
A collection of d-dimensional items
Each item has d aspects (coordinates): (x0, x1, · · · , xd−1)
Operations: insert, delete, range-search query

(Orthogonal) Range-search query: specify a range (interval) for
certain aspects, and find all the items whose aspects fall within given
ranges.
Example: laptops with screen size between 12 and 14 inches, RAM
between 2 and 4 GB, price between 500 and 800 CAD

Hinek & Storjohann (CS, UW) CS240 - Module 7 Winter 2012 2 / 22

Multi-Dimensional Data

Each item has d aspects (coordinates): (x0, x1, · · · , xd−1)

Aspect values (xi) are numbers

Each item corresponds to a point in d-dimensional space

We concentrate on d = 2, i.e., points in Euclidean plane

price (CAD)

1100 1300 1400 1500 1600 1700 1800
processor speed (MHz)

600

800

1000

1200

(1200,1000)

range-search query (1350 ≤ x ≤ 1550, 700 ≤ y ≤ 1100)

item: ordered pair (x , y) ∈ R× R

Hinek & Storjohann (CS, UW) CS240 - Module 7 Winter 2012 3 / 22

One-Dimensional Range Search

First solution: ordered arrays
I Running time: O(log n + k), k : number of reported items
I Problem: does not generalize to higher dimensions

Second solution: balanced BST (e.g., AVL tree)

BST-RangeSearch(T , k1, k2)
T : A balanced search tree, k1, k2: search keys
Report keys in T that are in range [k1, k2]
1. if T = nil then return
2. if key(T) < k1 then
3. BST-RangeSearch(T .right, k1, k2)
4. if key(T) > k2 then
5. BST-RangeSearch(T .left, k1, k2)
6. if k1 ≤ key(T) ≤ k2 then
7. BST-RangeSearch(T .left, k1, k2)
8. report key(T)
9. BST-RangeSearch(T .right, k1, k2)

Hinek & Storjohann (CS, UW) CS240 - Module 7 Winter 2012 4 / 22

Range Search example
BST-RangeSearch(T , 30, 65)

Nodes either on boundary, inside, or outside.

52

35

15

9 27

42

39 46

74

65

60 69

97

86 99

Note: Not every boundary node is returned.

Hinek & Storjohann (CS, UW) CS240 - Module 7 Winter 2012 5 / 22

Range Search example
BST-RangeSearch(T , 30, 65)
Nodes either on boundary, inside, or outside.

52

35

15

9 27

42

39 46

74

65

60 69

97

86 99

Note: Not every boundary node is returned.

Hinek & Storjohann (CS, UW) CS240 - Module 7 Winter 2012 5 / 22

Range Search example
BST-RangeSearch(T , 30, 65)
Nodes either on boundary, inside, or outside.

52

35

15

9 27

42

39 46

74

65

60 69

97

86 99

Note: Not every boundary node is returned.
Hinek & Storjohann (CS, UW) CS240 - Module 7 Winter 2012 5 / 22

One-Dimensional Range Search

P1: path traversed in BST-Search(T , k1)

P2: path traversed in BST-Search(T , k2)

Partition nodes of T into three groups:
1 boundary nodes: nodes in P1 or P2

2 inside nodes: non-boundary nodes that belong to either (a subtree
rooted at a right child of a node of P1) or (a subtree rooted at a left
child of a node of P2)

3 outside nodes: non-boundary nodes that belong to either (a subtree
rooted at a left child of a node of P1) or (a subtree rooted at a right
child of a node of P2)

Hinek & Storjohann (CS, UW) CS240 - Module 7 Winter 2012 6 / 22

One-Dimensional Range Search

P1: path traversed in BST-Search(T , k1)

P2: path traversed in BST-Search(T , k2)

k : number of reported items

Nodes visited during the search:
I O(log n) boundary nodes
I O(k) inside nodes
I No outside nodes

Running time O(log n + k)

Hinek & Storjohann (CS, UW) CS240 - Module 7 Winter 2012 6 / 22

2-Dimensional Range Search

Each item has 2 aspects (coordinates): (xi , yi)

Each item corresponds to a point in Euclidean plane

Options for implementing d-dimensional dictionaries:
I Reduce to one-dimensional dictionary: combine the d-dimensional key

into one key
Problem: Range search on one aspect is not straightforward

I Use several dictionaries: one for each dimension
Problem: inefficient, wastes space

I Partition trees
F A tree with n leaves, each leaf corresponds to an item
F Each internal node corresponds to a region
F quadtrees, kd-trees

I multi-dimensional range trees

Hinek & Storjohann (CS, UW) CS240 - Module 7 Winter 2012 7 / 22

Quadtrees

We have n points P = {(x0, y0), (x1, y1), · · · , (xn−1, yn−1)} in the
plane

How to build a quadtree on P:
I Find a square R that contains all the points of P (We can compute

minimum and maximum x and y values among n points)
I Root of the quadtree corresponds to R
I Split: Partition R into four equal subsquares (quadrants), each

correspond to a child of R
I Recursively repeat this process for any node that contains more than

one point
I Points on split lines belong to left/bottom side
I Each leaf stores (at most) one point
I We can delete a leaf that does not contain any point

Hinek & Storjohann (CS, UW) CS240 - Module 7 Winter 2012 8 / 22

Quadtrees
Example: We have 13 points P = {(x0, y0), (x1, y1), · · · , (x12, y12)} in
the plane

Hinek & Storjohann (CS, UW) CS240 - Module 7 Winter 2012 9 / 22

Quadtrees
Example: We have 13 points P = {(x0, y0), (x1, y1), · · · , (x12, y12)} in
the plane

R

Hinek & Storjohann (CS, UW) CS240 - Module 7 Winter 2012 9 / 22

Quadtrees
Example: We have 13 points P = {(x0, y0), (x1, y1), · · · , (x12, y12)} in
the plane

R

NW
NW

NE NE

SE
SW

SW

EMPTY

SE

Hinek & Storjohann (CS, UW) CS240 - Module 7 Winter 2012 9 / 22

Quadtrees
Example: We have 13 points P = {(x0, y0), (x1, y1), · · · , (x12, y12)} in
the plane

R

NW

NW

NE

NESESW SE

Leaf nodes

Hinek & Storjohann (CS, UW) CS240 - Module 7 Winter 2012 9 / 22

Quadtrees
Example: We have 13 points P = {(x0, y0), (x1, y1), · · · , (x12, y12)} in
the plane

R

Leaf nodes

Hinek & Storjohann (CS, UW) CS240 - Module 7 Winter 2012 9 / 22

Quadtrees
Example: We have 13 points P = {(x0, y0), (x1, y1), · · · , (x12, y12)} in
the plane

R

Leaf nodes

Hinek & Storjohann (CS, UW) CS240 - Module 7 Winter 2012 9 / 22

Quadtrees
Example: We have 13 points P = {(x0, y0), (x1, y1), · · · , (x12, y12)} in
the plane

R

Hinek & Storjohann (CS, UW) CS240 - Module 7 Winter 2012 9 / 22

Quadtrees
Example: We have 13 points P = {(x0, y0), (x1, y1), · · · , (x12, y12)} in
the plane

R

Hinek & Storjohann (CS, UW) CS240 - Module 7 Winter 2012 9 / 22

Quadtree Operations

Search: Analogous to binary search trees

Insert:
I Search for the point
I Split the leaf if there are two points

Delete:
I Search for the point
I Remove the point
I Walk back up in the tree to discard unnecessary splits

Hinek & Storjohann (CS, UW) CS240 - Module 7 Winter 2012 10 / 22

Quadtree: Range Search

QTree-RangeSearch(T ,R)
T : A quadtree node, R: Query rectangle
1. if (T is a leaf) then
2. if (T .point ∈ R) then
3. report T .point
4. for each child C of T do
5. if C .region ∩ R 6= ∅ then
6. QTree-RangeSearch(C ,R)

Complexity of range search: Θ(n + h) even if the answer is ∅
spread factor of points P : β(P) = dmax/dmin

dmax(dmin): maximum (minimum) distance between two points in P

height of quadtree: h ∈ Θ(log2
dmax
dmin

)

Complexity to build initial tree: Θ(nh)

Hinek & Storjohann (CS, UW) CS240 - Module 7 Winter 2012 11 / 22

Quadtree Conclusion

Very easy to compute and handle

No complicated arithmetic, only divisions by 2 (usually the boundary
box is padded to get a power of two).

Space wasteful

Major drawback: can have very large height for certain nonuniform
distributions of points

Easily generates to higher dimensions (octrees, etc.).

Hinek & Storjohann (CS, UW) CS240 - Module 7 Winter 2012 12 / 22

kd-trees

We have n points P = {(x0, y0), (x1, y1), · · · , (xn−1, yn−1)} in the
plane

Quadtrees split square into quadrants regardless of where points
actually lie

kd-tree idea: Split the points into two (roughly) equal subsets

How to build a kd-tree on P:
I Split P into two equal subsets using a vertical line
I Split each of the two subsets into two equal pieces using horizontal lines
I Continue splitting, alternating vertical and horizontal lines, until every

point is in a separate region

Complexity: Θ(n log n), height of the tree: Θ(log n)

Hinek & Storjohann (CS, UW) CS240 - Module 7 Winter 2012 13 / 22

kd-trees

We have n points P = {(x0, y0), (x1, y1), · · · , (xn−1, yn−1)} in the
plane

Quadtrees split square into quadrants regardless of where points
actually lie

kd-tree idea: Split the points into two (roughly) equal subsets

More details:
I Initially, we sort the n points according to their x-coordinates.
I The root of the tree is the point with median x coordinate (index
bn/2c in the sorted list)

I All other points with x coordinate less than or equal to this go into the
left subtree; points with larger x-coordinate go in the right subtree.

I At alternating levels, we sort and split according to y -coordinates
instead.

Complexity: Θ(n log n), height of the tree: Θ(log n)

Hinek & Storjohann (CS, UW) CS240 - Module 7 Winter 2012 13 / 22

kd-trees

kd-tree idea: Split the points into two (roughly) equal subsets

A balanced binary tree

p0

p1

p2

p3

p4

p5p6

p7

p8

p9

p8

p1

p2

p0

p9

p3

p5

p6

p7

p4

Hinek & Storjohann (CS, UW) CS240 - Module 7 Winter 2012 14 / 22

kd-trees

kd-tree idea: Split the points into two (roughly) equal subsets

A balanced binary tree

p0

p1

p2

p3

p4

p5p6

p7

p8

p9

p8

p1

p2

p0

p9

p3

p5

p6

p7

p4

Hinek & Storjohann (CS, UW) CS240 - Module 7 Winter 2012 14 / 22

kd-trees

kd-tree idea: Split the points into two (roughly) equal subsets

A balanced binary tree

p0

p1

p2

p3

p4

p5p6

p7

p8

p9

p8

p1

p2

p0

p9

p3

p5

p6

p7

p4

Hinek & Storjohann (CS, UW) CS240 - Module 7 Winter 2012 14 / 22

kd-trees

kd-tree idea: Split the points into two (roughly) equal subsets

A balanced binary tree

p0

p1

p2

p3

p4

p5p6

p7

p8

p9

p8

p1

p2

p0

p9

p3

p5

p6

p7

p4

Hinek & Storjohann (CS, UW) CS240 - Module 7 Winter 2012 14 / 22

kd-trees

kd-tree idea: Split the points into two (roughly) equal subsets

A balanced binary tree

p0

p1

p2

p3

p4

p5p6

p7

p8

p9

p8

p1

p2

p0

p9

p3

p5

p6

p7

p4

Hinek & Storjohann (CS, UW) CS240 - Module 7 Winter 2012 14 / 22

kd-tree: Range Search

kd-rangeSearch(T ,R)
T : A kd-tree node, R: Query rectangle
1. if T is empty then return
2. if T .point ∈ R then
3. report T .point
4. for each child C of T do
5. if C .region ∩ R 6= ∅ then
6. kd-rangeSearch(C ,R)

Hinek & Storjohann (CS, UW) CS240 - Module 7 Winter 2012 15 / 22

kd-tree: Range Search

kd-rangeSearch(T ,R, split[← ‘x’])
T : A kd-tree node, R: Query rectangle
1. if T is empty then return
2. if T .point ∈ R then
3. report T .point
4. if split = ‘x’ then
5. if T .point.x ≥ R.leftSide then
6. kd-rangeSearch(T .left,R, ‘y’)
7. if T .point.x < R.rightSide then
8. kd-rangeSearch(T .right,R, ‘y’)
9. if split = ‘y’ then
10. if T .point.y ≥ R.bottomSide then
11. kd-rangeSearch(T .left,R, ‘x’)
12. if T .point.y < R.topSide then
13. kd-rangeSearch(T .right,R, ‘x’)

Hinek & Storjohann (CS, UW) CS240 - Module 7 Winter 2012 15 / 22

kd-tree: Range Search Complexity

The complexity is O(k + U) where k is the number of keys reported
and U is the number of regions we go to but unsuccessfully

U corresponds to the number of regions which intersect but are not
fully in R

Those regions have to intersect one of the four sides of R

Q(n): Maximum number of regions in a kd-tree with n points that
intersect a vertical (horizontal) line

Q(n) satisfies the following recurrence relation:

Q(n) = 2Q(n/4) + O(1)

It solves to Q(n) = O(
√
n)

Therefore, the complexity of range search in kd-trees is O(k +
√
n)

Hinek & Storjohann (CS, UW) CS240 - Module 7 Winter 2012 16 / 22

kd-tree: Higher Dimensions

kd-trees for d-dimensional space
I At the root the point set is partitioned based on the first coordinate
I At the children of the root the partition is based on the second

coordinate
I At depth d − 1 the partition is based on the last coordinate
I At depth d we start all over again, partitioning on first coordinate

Storage: O(n)

Construction time: O(n log n)

Range query time: O(n1−1/d + k)

(Note: d is considered to be a constant.)

Hinek & Storjohann (CS, UW) CS240 - Module 7 Winter 2012 17 / 22

Range Trees

We have n points P = {(x0, y0), (x1, y1), · · · , (xn−1, yn−1)} in the
plane

A range tree is a tree of trees (a multi-level data structure)

How to build a range tree on P:
I Build a balanced binary search tree τ determined by the x-coordinates

of the n points
I For every node v ∈ τ , build a balanced binary search tree τassoc(v)

(associated structure of τ) determined by the y -coordinates of the
nodes in the subtree of τ with root node v

Hinek & Storjohann (CS, UW) CS240 - Module 7 Winter 2012 18 / 22

Range Tree Structure

Section 5.3
RANGE TREES

T

P(ν)

ν

Tassoc(ν)

P(ν)

binary search tree
on y-coordinates

binary search tree on
x-coordinates

Figure 5.6
A 2-dimensional range tree

returns the root of a 2-dimensional range tree T of P. As in the previous section,
we assume that no two points have the same x- or y-coordinate. We shall get rid
of this assumption in Section 5.5.

Algorithm BUILD2DRANGETREE(P)
Input. A set P of points in the plane.
Output. The root of a 2-dimensional range tree.
1. Construct the associated structure: Build a binary search tree Tassoc on the

set Py of y-coordinates of the points in P. Store at the leaves of Tassoc not
just the y-coordinate of the points in Py, but the points themselves.

2. if P contains only one point
3. then Create a leaf ν storing this point, and make Tassoc the associated

structure of ν .
4. else Split P into two subsets; one subset Pleft contains the points with

x-coordinate less than or equal to xmid, the median x-coordinate,
and the other subset Pright contains the points with x-coordinate
larger than xmid.

5. νleft ← BUILD2DRANGETREE(Pleft)
6. νright ← BUILD2DRANGETREE(Pright)
7. Create a node ν storing xmid, make νleft the left child of ν , make

νright the right child of ν , and make Tassoc the associated structure
of ν .

8. return ν

Note that in the leaves of the associated structures we do not just store the
y-coordinate of the points but the points themselves. This is important because,
when searching the associated structures, we need to report the points and not
just the y-coordinates.

Lemma 5.6 A range tree on a set of n points in the plane requires O(n logn)
storage.

Proof. A point p in P is stored only in the associated structure of nodes on the
path in T towards the leaf containing p. Hence, for all nodes at a given depth of T, 107

Hinek & Storjohann (CS, UW) CS240 - Module 7 Winter 2012 19 / 22

Range Trees: Operations

Search: trivially as in a binary search tree

Insert: insert point in τ by x-coordinate

From inserted leaf, walk back up to the root and insert the point in
all associated trees τassoc(v) of nodes v on path to the root

Delete: analogous to insertion

Note: re-balancing is a problem!

Hinek & Storjohann (CS, UW) CS240 - Module 7 Winter 2012 20 / 22

Range Trees: Range Search

A two stage process

To perform a range search query R = [x1, x2]× [y1, y2]:
I Perform a range search (on the x-coordinates) for the interval [x1, x2]

in τ (BST-RangeSearch(τ, x1, x2))
I For every outside node, do nothing.
I For every “top” inside node v , perform a range search (on the

y -coordinates) for the interval [y1, y2] in τassoc(v). During the range
search of τassoc(v), do not check any x-coordinates (they are all within
range).

I For every boundary node, test to see if the corresponding point is
within the region R.

Running time: O(k + log2 n)

Range tree space usage: O(n log n)

Hinek & Storjohann (CS, UW) CS240 - Module 7 Winter 2012 21 / 22

Range Trees: Higher Dimensions

Range trees for d-dimensional space
I Storage: O(n logd−1 n)
I Construction time: O(n logd−1 n)
I Range query time: O(logd n + k)

(Note: d is considered to be a constant.)

Section 5.4
HIGHER-DIMENSIONAL RANGE TREES

Lemma 5.7 A query with an axis-parallel rectangle in a range tree storing n
points takes O(log2 n+ k) time, where k is the number of reported points.

Proof. At each node ν in the main tree T we spend constant time to decide where
the search path continues, and we possibly call 1DRANGEQUERY. Theorem 5.2
states that the time we spend in this recursive call is O(logn+ kν), where kν is
the number of points reported in this call. Hence, the total time we spend is

∑
ν

O(logn+ kν),

where the summation is over all nodes in the main tree T that are visited. Notice
that the sum ∑ν kν equals k, the total number of reported points. Furthermore,
the search paths of x and x′ in the main tree T have length O(logn). Hence,
∑ν O(logn) = O(log2 n). The lemma follows.

The following theorem summarizes the performance of 2-dimensional range
trees.

Theorem 5.8 Let P be a set of n points in the plane. A range tree for P uses
O(n logn) storage and can be constructed in O(n logn) time. By querying this
range tree one can report the points in P that lie in a rectangular query range in
O(log2 n+ k) time, where k is the number of reported points.

The query time stated in Theorem 5.8 can be improved to O(logn+ k) by a
technique called fractional cascading. This is described in Section 5.6.

5.4 Higher-Dimensional Range Trees

It is fairly straightforward to generalize 2-dimensional range trees to higher-
dimensional range trees. We only describe the global approach.

Let P be a set of points in d-dimensional space. We construct a balanced
binary search tree on the first coordinate of the points. The canonical subset
P(ν) of a node ν in this first-level tree, the main tree, consists of the points
stored in the leaves of the subtree rooted at ν . For each node ν we construct
an associated structure Tassoc(ν); the second-level tree Tassoc(ν) is a (d − 1)-
dimensional range tree for the points in P(ν), restricted to their last d − 1
coordinates. This (d −1)-dimensional range tree is constructed recursively in
the same way: it is a balanced binary search tree on the second coordinate of the
points, in which each node has a pointer to a (d −2)-dimensional range tree of
the points in its subtree, restricted to the last (d −2) coordinates. The recursion
stops when we are left with points restricted to their last coordinate; these are
stored in a 1-dimensional range tree—a balanced binary search tree.

The query algorithm is also very similar to the 2-dimensional case. We use
the first-level tree to locate O(logn) nodes whose canonical subsets together
contain all the points whose first coordinates are in the correct range. These
canonical subsets are queried further by performing a range query on the cor-
responding second-level structures. In each second-level structure we select 109

Hinek & Storjohann (CS, UW) CS240 - Module 7 Winter 2012 22 / 22

Range Trees: Higher Dimensions

Space/time trade-off
I Storage: O(n logd−1 n) kd-trees: O(n)
I Construction time: O(n logd−1 n) kd-trees: O(n log n)
I Range query time: O(logd n + k) kd-trees: O(n1−1/d + k)

(Note: d is considered to be a constant.)

Section 5.4
HIGHER-DIMENSIONAL RANGE TREES

Lemma 5.7 A query with an axis-parallel rectangle in a range tree storing n
points takes O(log2 n+ k) time, where k is the number of reported points.

Proof. At each node ν in the main tree T we spend constant time to decide where
the search path continues, and we possibly call 1DRANGEQUERY. Theorem 5.2
states that the time we spend in this recursive call is O(logn+ kν), where kν is
the number of points reported in this call. Hence, the total time we spend is

∑
ν

O(logn+ kν),

where the summation is over all nodes in the main tree T that are visited. Notice
that the sum ∑ν kν equals k, the total number of reported points. Furthermore,
the search paths of x and x′ in the main tree T have length O(logn). Hence,
∑ν O(logn) = O(log2 n). The lemma follows.

The following theorem summarizes the performance of 2-dimensional range
trees.

Theorem 5.8 Let P be a set of n points in the plane. A range tree for P uses
O(n logn) storage and can be constructed in O(n logn) time. By querying this
range tree one can report the points in P that lie in a rectangular query range in
O(log2 n+ k) time, where k is the number of reported points.

The query time stated in Theorem 5.8 can be improved to O(logn+ k) by a
technique called fractional cascading. This is described in Section 5.6.

5.4 Higher-Dimensional Range Trees

It is fairly straightforward to generalize 2-dimensional range trees to higher-
dimensional range trees. We only describe the global approach.

Let P be a set of points in d-dimensional space. We construct a balanced
binary search tree on the first coordinate of the points. The canonical subset
P(ν) of a node ν in this first-level tree, the main tree, consists of the points
stored in the leaves of the subtree rooted at ν . For each node ν we construct
an associated structure Tassoc(ν); the second-level tree Tassoc(ν) is a (d − 1)-
dimensional range tree for the points in P(ν), restricted to their last d − 1
coordinates. This (d −1)-dimensional range tree is constructed recursively in
the same way: it is a balanced binary search tree on the second coordinate of the
points, in which each node has a pointer to a (d −2)-dimensional range tree of
the points in its subtree, restricted to the last (d −2) coordinates. The recursion
stops when we are left with points restricted to their last coordinate; these are
stored in a 1-dimensional range tree—a balanced binary search tree.

The query algorithm is also very similar to the 2-dimensional case. We use
the first-level tree to locate O(logn) nodes whose canonical subsets together
contain all the points whose first coordinates are in the correct range. These
canonical subsets are queried further by performing a range query on the cor-
responding second-level structures. In each second-level structure we select 109

Hinek & Storjohann (CS, UW) CS240 - Module 7 Winter 2012 22 / 22

	Range Search Query
	Multi-Dimensional Data
	Multi-Dimensional Data
	One-Dimensional Range Search
	Range Search example
	One-Dimensional Range Search
	2-Dimensional Range Search
	Quadtrees
	Quadtrees
	Quadtree Operations
	Quadtree: Range Search
	Quadtree Conclusion
	kd-trees
	kd-trees
	kd-tree: Range Search
	kd-tree: Range Search Complexity
	kd-tree: Higher Dimensions
	Range Trees
	Range Tree Structure
	Range Trees: Operations
	Range Trees: Range Search
	Range Trees: Higher Dimensions

