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Multi-Dimensional Data

Various applications
I Attributes of a product (laptop: price, screen size, processor speed,

RAM, hard drive,· · · )
I Attributes of an employee (name, age, salary,· · · )

Dictionary for multi-dimensional data
A collection of d-dimensional items
Each item has d aspects (coordinates): (x0, x1, · · · , xd−1)
Operations: insert, delete, range-search query

(Orthogonal) Range-search query: specify a range (interval) for
certain aspects, and find all the items whose aspects fall within given
ranges.
Example: laptops with screen size between 12 and 14 inches, RAM
between 2 and 4 GB, price between 500 and 800 CAD
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Multi-Dimensional Data

Each item has d aspects (coordinates): (x0, x1, · · · , xd−1)

Aspect values (xi ) are numbers

Each item corresponds to a point in d-dimensional space

We concentrate on d = 2, i.e., points in Euclidean plane

price (CAD)

1100 1300 1400 1500 1600 1700 1800
processor speed (MHz)

600

800

1000

1200

(1200,1000)

range-search query (1350 ≤ x ≤ 1550, 700 ≤ y ≤ 1100)

item: ordered pair (x , y) ∈ R× R
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One-Dimensional Range Search

First solution: ordered arrays
I Running time: O(log n + k), k : number of reported items
I Problem: does not generalize to higher dimensions

Second solution: balanced BST (e.g., AVL tree)

BST-RangeSearch(T , k1, k2)
T : A balanced search tree, k1, k2: search keys
Report keys in T that are in range [k1, k2]
1. if T = nil then return
2. if key(T ) < k1 then
3. BST-RangeSearch(T .right, k1, k2)
4. if key(T ) > k2 then
5. BST-RangeSearch(T .left, k1, k2)
6. if k1 ≤ key(T ) ≤ k2 then
7. BST-RangeSearch(T .left, k1, k2)
8. report key(T )
9. BST-RangeSearch(T .right, k1, k2)
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Range Search example
BST-RangeSearch(T , 30, 65)

Nodes either on boundary, inside, or outside.

52

35

15

9 27

42

39 46

74

65

60 69

97

86 99

Note: Not every boundary node is returned.
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One-Dimensional Range Search

P1: path traversed in BST-Search(T , k1)

P2: path traversed in BST-Search(T , k2)

Partition nodes of T into three groups:
1 boundary nodes: nodes in P1 or P2

2 inside nodes: non-boundary nodes that belong to either (a subtree
rooted at a right child of a node of P1) or (a subtree rooted at a left
child of a node of P2)

3 outside nodes: non-boundary nodes that belong to either (a subtree
rooted at a left child of a node of P1) or (a subtree rooted at a right
child of a node of P2)
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One-Dimensional Range Search

P1: path traversed in BST-Search(T , k1)

P2: path traversed in BST-Search(T , k2)

k : number of reported items

Nodes visited during the search:
I O(log n) boundary nodes
I O(k) inside nodes
I No outside nodes

Running time O(log n + k)
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2-Dimensional Range Search

Each item has 2 aspects (coordinates): (xi , yi )

Each item corresponds to a point in Euclidean plane

Options for implementing d-dimensional dictionaries:
I Reduce to one-dimensional dictionary: combine the d-dimensional key

into one key
Problem: Range search on one aspect is not straightforward

I Use several dictionaries: one for each dimension
Problem: inefficient, wastes space

I Partition trees
F A tree with n leaves, each leaf corresponds to an item
F Each internal node corresponds to a region
F quadtrees, kd-trees

I multi-dimensional range trees
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Quadtrees

We have n points P = {(x0, y0), (x1, y1), · · · , (xn−1, yn−1)} in the
plane

How to build a quadtree on P:
I Find a square R that contains all the points of P (We can compute

minimum and maximum x and y values among n points)
I Root of the quadtree corresponds to R
I Split: Partition R into four equal subsquares (quadrants), each

correspond to a child of R
I Recursively repeat this process for any node that contains more than

one point
I Points on split lines belong to left/bottom side
I Each leaf stores (at most) one point
I We can delete a leaf that does not contain any point
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Quadtrees
Example: We have 13 points P = {(x0, y0), (x1, y1), · · · , (x12, y12)} in
the plane
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Quadtree Operations

Search: Analogous to binary search trees

Insert:
I Search for the point
I Split the leaf if there are two points

Delete:
I Search for the point
I Remove the point
I Walk back up in the tree to discard unnecessary splits
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Quadtree: Range Search

QTree-RangeSearch(T ,R)
T : A quadtree node, R: Query rectangle
1. if (T is a leaf) then
2. if (T .point ∈ R) then
3. report T .point
4. for each child C of T do
5. if C .region ∩ R 6= ∅ then
6. QTree-RangeSearch(C ,R)

Complexity of range search: Θ(n + h) even if the answer is ∅
spread factor of points P : β(P) = dmax/dmin

dmax(dmin): maximum (minimum) distance between two points in P

height of quadtree: h ∈ Θ(log2
dmax
dmin

)

Complexity to build initial tree: Θ(nh)
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Quadtree Conclusion

Very easy to compute and handle

No complicated arithmetic, only divisions by 2 (usually the boundary
box is padded to get a power of two).

Space wasteful

Major drawback: can have very large height for certain nonuniform
distributions of points

Easily generates to higher dimensions (octrees, etc. ).
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kd-trees

We have n points P = {(x0, y0), (x1, y1), · · · , (xn−1, yn−1)} in the
plane

Quadtrees split square into quadrants regardless of where points
actually lie

kd-tree idea: Split the points into two (roughly) equal subsets

How to build a kd-tree on P:
I Split P into two equal subsets using a vertical line
I Split each of the two subsets into two equal pieces using horizontal lines
I Continue splitting, alternating vertical and horizontal lines, until every

point is in a separate region

Complexity: Θ(n log n), height of the tree: Θ(log n)
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kd-trees

We have n points P = {(x0, y0), (x1, y1), · · · , (xn−1, yn−1)} in the
plane

Quadtrees split square into quadrants regardless of where points
actually lie

kd-tree idea: Split the points into two (roughly) equal subsets

More details:
I Initially, we sort the n points according to their x-coordinates.
I The root of the tree is the point with median x coordinate (index
bn/2c in the sorted list)

I All other points with x coordinate less than or equal to this go into the
left subtree; points with larger x-coordinate go in the right subtree.

I At alternating levels, we sort and split according to y -coordinates
instead.

Complexity: Θ(n log n), height of the tree: Θ(log n)
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kd-trees

kd-tree idea: Split the points into two (roughly) equal subsets

A balanced binary tree
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kd-tree: Range Search

kd-rangeSearch(T ,R)
T : A kd-tree node, R: Query rectangle
1. if T is empty then return
2. if T .point ∈ R then
3. report T .point
4. for each child C of T do
5. if C .region ∩ R 6= ∅ then
6. kd-rangeSearch(C ,R)
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kd-tree: Range Search

kd-rangeSearch(T ,R, split[← ‘x’])
T : A kd-tree node, R: Query rectangle
1. if T is empty then return
2. if T .point ∈ R then
3. report T .point
4. if split = ‘x’ then
5. if T .point.x ≥ R.leftSide then
6. kd-rangeSearch(T .left,R, ‘y’)
7. if T .point.x < R.rightSide then
8. kd-rangeSearch(T .right,R, ‘y’)
9. if split = ‘y’ then
10. if T .point.y ≥ R.bottomSide then
11. kd-rangeSearch(T .left,R, ‘x’)
12. if T .point.y < R.topSide then
13. kd-rangeSearch(T .right,R, ‘x’)
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kd-tree: Range Search Complexity

The complexity is O(k + U) where k is the number of keys reported
and U is the number of regions we go to but unsuccessfully

U corresponds to the number of regions which intersect but are not
fully in R

Those regions have to intersect one of the four sides of R

Q(n): Maximum number of regions in a kd-tree with n points that
intersect a vertical (horizontal) line

Q(n) satisfies the following recurrence relation:

Q(n) = 2Q(n/4) + O(1)

It solves to Q(n) = O(
√
n)

Therefore, the complexity of range search in kd-trees is O(k +
√
n)
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kd-tree: Higher Dimensions

kd-trees for d-dimensional space
I At the root the point set is partitioned based on the first coordinate
I At the children of the root the partition is based on the second

coordinate
I At depth d − 1 the partition is based on the last coordinate
I At depth d we start all over again, partitioning on first coordinate

Storage: O(n)

Construction time: O(n log n)

Range query time: O(n1−1/d + k)

(Note: d is considered to be a constant.)
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Range Trees

We have n points P = {(x0, y0), (x1, y1), · · · , (xn−1, yn−1)} in the
plane

A range tree is a tree of trees (a multi-level data structure)

How to build a range tree on P:
I Build a balanced binary search tree τ determined by the x-coordinates

of the n points
I For every node v ∈ τ , build a balanced binary search tree τassoc(v)

(associated structure of τ) determined by the y -coordinates of the
nodes in the subtree of τ with root node v

Hinek & Storjohann (CS, UW) CS240 - Module 7 Winter 2012 18 / 22



Range Tree Structure

Section 5.3
RANGE TREES

T

P(ν)

ν

Tassoc(ν)

P(ν)

binary search tree
on y-coordinates

binary search tree on
x-coordinates

Figure 5.6
A 2-dimensional range tree

returns the root of a 2-dimensional range tree T of P. As in the previous section,
we assume that no two points have the same x- or y-coordinate. We shall get rid
of this assumption in Section 5.5.

Algorithm BUILD2DRANGETREE(P)
Input. A set P of points in the plane.
Output. The root of a 2-dimensional range tree.
1. Construct the associated structure: Build a binary search tree Tassoc on the

set Py of y-coordinates of the points in P. Store at the leaves of Tassoc not
just the y-coordinate of the points in Py, but the points themselves.

2. if P contains only one point
3. then Create a leaf ν storing this point, and make Tassoc the associated

structure of ν .
4. else Split P into two subsets; one subset Pleft contains the points with

x-coordinate less than or equal to xmid, the median x-coordinate,
and the other subset Pright contains the points with x-coordinate
larger than xmid.

5. νleft ← BUILD2DRANGETREE(Pleft)
6. νright ← BUILD2DRANGETREE(Pright)
7. Create a node ν storing xmid, make νleft the left child of ν , make

νright the right child of ν , and make Tassoc the associated structure
of ν .

8. return ν

Note that in the leaves of the associated structures we do not just store the
y-coordinate of the points but the points themselves. This is important because,
when searching the associated structures, we need to report the points and not
just the y-coordinates.

Lemma 5.6 A range tree on a set of n points in the plane requires O(n logn)
storage.

Proof. A point p in P is stored only in the associated structure of nodes on the
path in T towards the leaf containing p. Hence, for all nodes at a given depth of T, 107
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Range Trees: Operations

Search: trivially as in a binary search tree

Insert: insert point in τ by x-coordinate

From inserted leaf, walk back up to the root and insert the point in
all associated trees τassoc(v) of nodes v on path to the root

Delete: analogous to insertion

Note: re-balancing is a problem!
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Range Trees: Range Search

A two stage process

To perform a range search query R = [x1, x2]× [y1, y2]:
I Perform a range search (on the x-coordinates) for the interval [x1, x2]

in τ (BST-RangeSearch(τ, x1, x2))
I For every outside node, do nothing.
I For every “top” inside node v , perform a range search (on the

y -coordinates) for the interval [y1, y2] in τassoc(v). During the range
search of τassoc(v), do not check any x-coordinates (they are all within
range).

I For every boundary node, test to see if the corresponding point is
within the region R.

Running time: O(k + log2 n)

Range tree space usage: O(n log n)

Hinek & Storjohann (CS, UW) CS240 - Module 7 Winter 2012 21 / 22



Range Trees: Higher Dimensions

Range trees for d-dimensional space
I Storage: O(n logd−1 n)
I Construction time: O(n logd−1 n)
I Range query time: O(logd n + k)

(Note: d is considered to be a constant.)

Section 5.4
HIGHER-DIMENSIONAL RANGE TREES

Lemma 5.7 A query with an axis-parallel rectangle in a range tree storing n
points takes O(log2 n+ k) time, where k is the number of reported points.

Proof. At each node ν in the main tree T we spend constant time to decide where
the search path continues, and we possibly call 1DRANGEQUERY. Theorem 5.2
states that the time we spend in this recursive call is O(logn+ kν), where kν is
the number of points reported in this call. Hence, the total time we spend is

∑
ν

O(logn+ kν),

where the summation is over all nodes in the main tree T that are visited. Notice
that the sum ∑ν kν equals k, the total number of reported points. Furthermore,
the search paths of x and x′ in the main tree T have length O(logn). Hence,
∑ν O(logn) = O(log2 n). The lemma follows.

The following theorem summarizes the performance of 2-dimensional range
trees.

Theorem 5.8 Let P be a set of n points in the plane. A range tree for P uses
O(n logn) storage and can be constructed in O(n logn) time. By querying this
range tree one can report the points in P that lie in a rectangular query range in
O(log2 n+ k) time, where k is the number of reported points.

The query time stated in Theorem 5.8 can be improved to O(logn+ k) by a
technique called fractional cascading. This is described in Section 5.6.

5.4 Higher-Dimensional Range Trees

It is fairly straightforward to generalize 2-dimensional range trees to higher-
dimensional range trees. We only describe the global approach.

Let P be a set of points in d-dimensional space. We construct a balanced
binary search tree on the first coordinate of the points. The canonical subset
P(ν) of a node ν in this first-level tree, the main tree, consists of the points
stored in the leaves of the subtree rooted at ν . For each node ν we construct
an associated structure Tassoc(ν); the second-level tree Tassoc(ν) is a (d − 1)-
dimensional range tree for the points in P(ν), restricted to their last d − 1
coordinates. This (d −1)-dimensional range tree is constructed recursively in
the same way: it is a balanced binary search tree on the second coordinate of the
points, in which each node has a pointer to a (d −2)-dimensional range tree of
the points in its subtree, restricted to the last (d −2) coordinates. The recursion
stops when we are left with points restricted to their last coordinate; these are
stored in a 1-dimensional range tree—a balanced binary search tree.

The query algorithm is also very similar to the 2-dimensional case. We use
the first-level tree to locate O(logn) nodes whose canonical subsets together
contain all the points whose first coordinates are in the correct range. These
canonical subsets are queried further by performing a range query on the cor-
responding second-level structures. In each second-level structure we select 109
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