List Update for Data

Compression

Alex Lopez-Ortiz, University of Waterloo

Reza Dorrigiv, Samsung Research Labs; Shahin Kamali,

U. Waterloo; Susana Ladra, U. A Coruna; Diego Seco,
U. Concepcion;

List update

Problem definition:
m Set of items stored in a sequential linked list.

m [tems are requested in an on-line fashion, i.e.
wd do not know the sequence of requests in
advance

m After each access the list can be rearranged

Problem definition (cont.):
m Cost of retrieving item is position in the list
m |t can be moved forward for free

m Any other element can be swapped with an
immediate neighbor as many times as desired
at a costof 1

m GOAL: Devise the best ordering moves for the
list to minimize access_cost + reordering costs

Basic rearranging schemes:

m MTF: move last accessed item to the front of
the list

m Transpose: swap last accessed item with one
preceding it

m FC arrange by frequency count (so far)
m Timestamp: move item past “stale” ones
m MF,: move forward to 1/k-th from the front

Traditionally been studied under the
competitive ratio [Sleator & Tarjan 1985]:

Compare cost against offline optimum that
knows the sequence of requests in advance

cost of online algorithm on input I

sup _ . .
cost of offline optimum on input I

vI

Known results under ST model :

m MTF is best
m Randomized BIT is “better” (not really)
m Transpose is bad (not really)

m Lookahead has no effect on worst case
behaviour (not really)

m LU works best when there is locality of
reference [Dorrigiv&L-O,Albers&Lauer] DLAL

®m measures performance using a refined
“competitive ratio” measure based on non-
locality of reference

m Cost proportional to amount of non-locality

Bentley et al. (1986) observed that List Update can
be used for data compression:

Initialize list to alphabet in some predefined
order (e.g. alphabetical)

For each letter in the text:
access letter in linked list
output index of position in list (self-encoded)
move letter to front (MTF)

Bentley et al.:

m LU/MTF for characters often superior to
Huffman

m LU/MTF < 2 static Huffman

(using Elias-A self-encoding) in the worst case

m Can also be used in words instead of chars.
Far superior to Huffman

Albers & Mitzenmacher:
LU/MTF < 14+H(S)+2 log(1+H(s))

in the worst case, where H(s)=size of Huffman
encoding (using Elias-B self-encoded numbers)

Ditto for LU/TS.
Experiments show TS is better than MTF

m Transforms text to a more regular form:

.yyyyyeteelstydndeabwb, tflttttereenstdcmnred, trgtsol
dsbtdaalhhhhhhhhhhhhhhhhhohhhhhhhhhhhhhhhhhhhhhhhhhh

hhaesnesl]s, tyenrsltssdwderrrrrnneyyffnndee,gneek..

(sample from the BWT of an actual text)

m |deally suited for LU compression

m One choice fits all: MTF is best

m Possible to do better via selection of
parameter, e.g. use Timestamp(a) for0<a <1

m Optimize for a by trying several options, select
best [Dorrigiv&L-O’08]

m MTF developed for costs of ST model: cost of
item with position 1 in the list is I

m The “cost” of an LU algorithm with BWT is
#bits to write position I in the list, i.e. log(l)

Possibly an important distinction:
m MF, is 4 competitive in ST model (k=2)

m MF, is log(m) competitive in the compression
model, where m is the size of the list

Theorem [Kamali, L-O] MTF is 2 competitive
in the restricted compression model

' _hinear

9,771,428] 5,155,34:

bookl
Free Paid AC STD MRM ‘
MTF|9.002,657 019,771,428 9,771,428 9,771,428
TS |[3,215,445| 48 6,983 8,326,983
CB 907,829 . 0,796 52,941,414 | &
RCB (/2,415,021 From Kam.a“’ Ladra, 2,725|7,373,290
Lopez-Ortiz, Seco =
Free \ [DCC 2013] JD MRM
MTF [[6,033,483] =5 O, 210,092 0,110,592 6,410,592
TS [|2,324,979 //D 5,788,482 5,788,482| 5,788,482
CB 067,786 (|357820,313(2,271,967([359,792,280] 32,91¢
RCB [[2,363,356| 24,002,408(5,141,341|| 29,143,749
progc
Free Paid AC STD MRM
MTEF|| 645,069 O 684,680 684,680 634,680
TS 262,363 0 632,842 632,842 632,842
CB 78,196 26,575,729| 223,937 26,799,666| 3,010,434
RCB 159,749 1,580,853 529,991 2,110,844 529,991
trans
Free Paid AC STD MRM
MTF||1,531,585 011,625,280 1,625,280 1,625,280
TS 651,001 01,548,988 1,548,988 1,548,988
CB 129,422 69,476,148 380,704 69,856,852 7,339,262
RCB|| 485,861 4,937,879|1,344,826 6,282,70511,344,826

: 129,079
520.001| 213,130

1

m |[dea: keep track of frequency of all contexts of
ength at most c seen so far

m Find largest matching context

m Encode the option according to frequencies
observed

Example string: buxucdux
1. After outputing ¢, to encode d

2. Say we have seen contexts ¢, uc, and xuc, but
not uxuc.

3. Then rearrange the list according to
frequencies of all possible continuations of
xuc (largest seen context)

4. Output index of d in rearranged list

ababedg ..ba

O — 3 fOI' a SequenC€ p— '

lgorithms. We use bold type to highlight the best values for each file.

Filo Size | Before BWT _ _ After BWT _
(bytes) || MTF | ¢B | ¢B’ | RCB | RCB’ || MTF | CB | CB’ | RCB | RCB
bib 111261 95.69 | 29.78 30.47 | 70.44 72.16 30.49 | 34.04 | 36.03 32.90 | 32.24
book1 T687TT1 83.82 | 34.15 35.75 | 63.99 65.97 35.74 | 38.66 | 40.22 36.37 | 36.21
book?2 610856 84.35 | 29.97 30.54 | 65.00 65.39 31.14 | 34.08 | 35.87 32.32 32.20
geo 102400 104.91 76.69 80.46 | 99.43 | 104.37 50.78 | 47.87 | 51.79 | 47.13 | 48.53
news 377109 88.50 | 35.05 35.7 68.31 69.01 36.21 | 39.85 | 43.16 38.25 | 38.47
obj1 21504 89.99 59.38 57.39 | 80.40 76.11 43.75 | 46.02 | 49.04 45.38 | 44.66
obj2 246814 101.68 36.72 34.81 | 88.20 79.39 28.06 | 30.29 | 32.49 20.34 | 29.25
paperl 53161 86.79 | 33.64 34.21 | 65.11 66.82 34.70 | 39.44 | 41.93 37.68 | 37.08
paper2 82199 84.47 | 33.50 34.62 | 62.83 65.35 34.86 | 38.43 | 41.06 36.52 | 36.35
pic 513216 23.21 | 19.54 20.14 | 21.55 21.78 20.08 | 19.77 | 21.07 19.60 19.84
progc 39611 88.74 34.46 | 34.34 | 66.28 66.28 35.04 | 40.01 | 42.20 38.48 | 37.23
progl 71646 77.01 26.08 | 25.71 | 58.15 57.58 26.31 | 29.29 | 31.36 28.02 | 27.80
progp 49379 81.09 26.32 | 25.90 | 61.23 59.90 26.00 | 29.20 | 30.91 28.05 | 27.70
trans 93695 87.58 24.35 24.31 | 65.63 65.25 24.12 | 26.92 | 28.76 26.02 | 25.78

"able 2: Compression percentage of text files of the Calgary Corpus using different list-update

m Can we improve the BWT as well?

m Online algorithms with advice: theoretical
model with access to an Oracle

m Goal: minimize the number of bits of
advice from the oracle while obtaining
(near-)optimal online performance

m Introduced by [KralovicC et al. in 2009] as a
purely theoretical study of online
algorithms

m|DEA: Compression is semi-offline

m At compression time we can do several
passes (e.g. Huffman requires two passes
over the input)

m At decompression time however we must
operate on line since we do not have the
entire uncompressed input

m Encode the answers “from the future” to
the decompressor in the preamble of the
compressed file

m \Whenever decompressor asks a question
to the Oracle, we read the answer from the
preamble

m Introduced BIB which

Divides input into blocks

Behaves as one of TimeStamp or MTF within each
block

This is controlled by a single bit of advice per
block

" N

Start file name | original file MTF TS BIB block | compressed file | advice cost
file name size (bytes) Size size (bytes) (bits)
Calgary Corpus
bib 111261 30.5013 | 32.3195 | 30.1948 | 117 33595 064
book1 768771 35.7T117 | 34.6887 | 34.1462 | 39 262506 19724
book2 610856 31.1388 | 31.4832 | 30.5859 | 507 186836 1222
2eo 102400 79.251 | 78.4229 | 77.8457 | 211 79714 501
news 377109 36.2137 | 38.6721 | 35.6995 38 134626 9935
objl 21504 57.2359 | 59.8726 | 56.5895 | 46 12169 479
obj2 246814 37.9043 | 41.9093 | 37.8098 | 121 93320 2053
paperl 53161 34.7191 | 37.6855 | 34.388 59 18281 013
paper2 82199 34.869 | 36.0369 | 34.2303 88 28137 948
paper3 46526 37.7724 | 39.7176 | 37.076 52 17250 906
paper4 13286 41.3367 | 44.6937 | 40.9303 34 0438 402
paperb 11954 42.3624 | 46.863 | 42.2118 | 17 5046 713
paper6 38105 35.2552 | 38.8558 | 35.1371 | 84 13389 467

pic 513216 20.156 | 19.5808 | 19.5797 | 519 100486 1008
progc 30611 35.0711 | 38.5247 | 34.9221 | 85 13833 480
progl 71646 26.3295 | 29.4308 | 26.2974 | 221 18841 340
progp 49379 26.0313 | 30.2193 | 26.0394 | 6030 12858 34
trans 93695 24.1176 | 28.6867 | 24.0984 | 475 22579 215

r‘r\ l‘lfn'l']'\l 1IvIT

r‘r\t'v‘\l 1 fal

« BN
Conclusions

m Theoretical study of list update for
compression just beginning

m Proof of 2-competitiveness for MTF in
compression model

m New best text compressor in general
m New best BWT-based text compressor

