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Random Algorithms QuickSort

Random algorithms you learned earlier:
QuickSort

Divide-and-Conquer sorting algorithm
choose a pivot element
partition by pivot element (smaller;
equal; bigger)
recursion on the partitions
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Random Algorithms QuickSort

QuickSort

Problem:
choosing the pivot
Is partitioning divides the elements evenly?
sometimes we choose the leftmost element
→ poor performance on already sorted array, O(n2) instead of the
expected O(n log n)

Solution:
we choose a random element as the pivot
→ small chance to choose a bad pivot, and so to partition unevenly
expected sorting time will be n × 2 log4/3 n, as we will choose the
pivot from the middle 50% in half of the cases
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Random Algorithms Primality test

Miller–Rabin primality test

For the RSA encryption we need big primes. If we multiply two big
prime number, it is a very hard problem, to find the prime factors of this
composite number. How do we find big primes? Can we tell a prime
from a composite number without knowing its prime factors? Indeed
we can! (Maple, acalc: isprime() function.)

Let n be prime (n > 2). It follows that n − 1 is even and we can
write it as n − 1 = 2sd
If we can find an a such that

ad 6≡ 1 (mod n) and
a2r d 6≡ −1 (mod n)
for all 0 ≤ r ≤ s − 1, then n is not prime.

We call a – a witness for the compositeness of n.
But how do we find such an a?
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Random Algorithms Primality test

Miller–Rabin primality test

We choose a randomly!
But what happens, if we choose a “bad” a?
It can be proved, that at least half of the 1 ≤ a < n are witnesses,
if n is composite
So by repeating testing of n several times we will tend to choose a
“good” witness a at least once!
Repeating the test 50 times the probability of choosing a “bad” a is
less, than 1/250 – it is more probable, that our computer will
miscalculate something!
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Random Algorithms Primality test

Random choosing – black and white balls

If we choose a white ball→ certainly
composite.
If we choose a black ball, perhaps prime!

3 4 5 6 7 8 9

10 11 12 13 14 15 16 17
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Random Algorithms

So far so good!

But: still no parallel algorithms,
and no casinos and gambling at all!

/
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Gambling Calculating π

Calculating π on a dartboard

Take a square frame of size 2×2, and
place a circle dartboard r = 1 on it
What is the probability of hitting the
dartboard of those hits inside the
frame?

we consider only the upper-right
quarter for simplicity of calculation
140 hits of 180: 140/180 = 0.778

The probability is the ratio of the
areas:

Acircle/Asquare = r2π/s2 = 12π/22 =
π/4 = 0.7853981
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Gambling Calculating π

Let’s calculate π by a computer!

We generate numbers for x , y coordinates in the upper-right
corner
→ two random numbers in the range [0,1]

Is it a hit to the dartboard?
Calculate the distance to the origin:

√
x2 + y2

If the distance smaller than the radius r = 1, then it is a hit!
(instead of square root calculation we raise both sides to the
square and use: x2 + y2 < 1)
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Gambling Calculating π

Let’s calculate π by a computer! – The C++ code

09: int main(int argc, char **argv){
10: double x,y, Pi, error;
11: const long long iternum=1000;
12:
13: srand48((unsigned)time(0));
14:
15: long long sum=0;
16: for(long long i=0;i<iternum;++i){
17: //x=(double)rand()/RAND_MAX;
18: //y=(double)rand()/RAND_MAX;
19: x=drand48();
20: y=drand48();
21: if(x*x+y*y<1) ++sum;
22: }
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Gambling Calculating π

The code – cont.

24: Pi=(4.0*sum)/(iternum);
25: error = fabs( Pi-M_PI );
26:
27: cout.precision(12);
28: cout<<"Pi: \t\t"<<M_PI<<endl;
29: cout<<"Pi by MC: \t"<<Pi<<endl;
30: cout<<"Error: \t\t"<<fixed<<error<<endl;
31:
32: return 0;
33: }
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Gambling Parallel programming with MPI

Massage Passing Interface

Easy extension to the sequential code
De facto standard in High Performance Computing
(supercomputers)
A dozen function calls to enable MPI (all start with MPI_):

in the beginning: Initialization
sending and receiving data (P2P, Broadcast, Reduction, etc.)
at the end: Finalizing

Predefined data types for portability

We start n separate processes and let them communicate through
message passing
Because we use n independent calculations we need to do n
times less iterations!
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Gambling Parallel programming with MPI

The parallel MPI code

10: int main(int argc, char **argv){
11: int id, nproc;
12: MPI_Status status;
13: double x,y, Pi, error;
14: long long allsum;
15: const long long iternum=1000;
16:
17: // Initialize MPI:
18: MPI_Init(&argc, &argv);
19: // Get my rank:
20: MPI_Comm_rank(MPI_COMM_WORLD, &id);
21: // Get the total number of processors:
22: MPI_Comm_size(MPI_COMM_WORLD, &nproc);
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Gambling Parallel programming with MPI

The parallel MPI code – cont.

24: srand48((unsigned)time(0));
25:
26: long long sum=0;
27: for(long long i=0;i<iternum/nproc;++i){
28: x=drand48();
29: y=drand48();
30: if(x*x+y*y<1) ++sum;
31: }
32:
33: //sum the local sum-s into the Master’s allsum
34: MPI_Reduce(&sum, &allsum, 1, MPI_LONG_LONG, MPI_SUM,
0, MPI_COMM_WORLD);
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Gambling Parallel programming with MPI

The parallel MPI code – cont.

36: //Master writes out the calculated Pi
37: if(id==0){
38: //calculate Pi, compare to the Pi in math.h
39: Pi=(4.0*allsum)/(iternum);
40: error = fabs( Pi-M_PI );
41: cout.precision(12);
42: cout<<"Pi: \t\t"<<M_PI<<endl;
43: cout<<"Pi by MC: \t"<<Pi<<endl;
44: cout<<"Error: \t\t"<<fixed<<error<<endl;
45: }
46:
47: // Terminate MPI:
48: MPI_Finalize();
49: return 0;
50: }
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Gambling Monte Carlo Integration

Numerical Integration

Suppose we want to calculate the integral of a smooth function f on
the interval [a,b] on the real axis:

I =

∫ b

a
f (x) dx

In numerical methods we choose points in the desired interval and
interpolate the function using function values at these points. We use
N equidistant points starting from a:

xn = a + n
(b − a)

N
.
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Gambling Monte Carlo Integration

Using the rectangular formula

∫ b

a
f (x) dx ≈ (b − a)

N

N−1∑
n=0

f (xn)
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Gambling Monte Carlo Integration

Using the trapezoidal formula

∫ b

a
f (x) dx ≈ (b − a)

N
1
2

N−1∑
n=0

(f (xn+1) + f (xn))
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Gambling Monte Carlo Integration

Problems

Consider the function y = |(sin(πx)|, and we would like to integrate it
over [0,10] using 11 sample points: xn = 0,1,2, . . . ,10:

I =

∫ 10

0
|(sin(πx)|dx
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Gambling Monte Carlo Integration

Monte Carlo Integration

The techniques described called the Quadrature Formulas, where we
choose some wn weights for the integration:∫ b

a
f (x) dx ≈ (b − a)

N

N−1∑
n=0

wnf (xn)

The Monte Carlo Integration is a variation of this method, where we
choose all the weights wn = 1, and we choose the xn points randomly!
The benefits are:

In higher dimension the exact numerical methods need so many
points that we cannot calculate with them
In higher dimension the exact numerical methods tend to be less
and less accurate, while the error of the Monte Carlo Integration is
independent of dimension: O(

√
1/N)

The Monte Carlo method is easy to implement, and. . .
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Gambling Monte Carlo Integration

and. . . it is easy to parallelize!

Independent processes can calculate with any random points
Only at the end we need some communication (reduction)
→ embarrassingly parallel!

The Monte Carlo method is even more interesting when we would like
to calculate over some “interesting” volume.

In this case we use a “frame” of an “easier” shape which includes
the target shape, and
use the wn weights indicating whether the given point is inside the
shape (than wn = 1), or outside it (wn = 0).

The calculation of π used the integration of f (x) = 1 over a circle
shape!
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Gambling Monte Carlo Integration

Crucial points of the method

Try to minimize the size of the
frame, as the opposite will increase
the error! The figure shows three
possible regions V that might be
used to sample a complicated
region W . V1 is a poor choice, V2
or V3 better.

The (original) error is:

σ =

√
〈f 2〉 − 〈f 〉2

N
,

where

〈f 〉 ≡ 1
N

N∑
i=1

f (xi), 〈f 2〉 ≡ 1
N

N∑
i=1

f 2(xi)
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Gambling Monte Carlo Integration

An interesting problem: center of mass

We want to estimate the following
integrals over the interior of the
complicated object:∫

ρdx dy dz

∫
xρdx dy dz

∫
yρdx dy dz

∫
zρdx dy dz

The coordinates of the center of mass
will be the ratio of the latter three
integrals (linear moments) to the first
one (the weight).
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Gambling Monte Carlo Integration

An interesting problem – cont.

Let ρ = 1 (we could use any function instead!) The inequality for the
interior of a torus: (

R −
√

x2 + y2
)2

+ z2 ≤ r2

Our torus has R = 3 and r = 1. The bounding box intersects at x = 1
and y = −3. So we have three inequalities:(

3−
√

x2 + y2
)2

+ z2 ≤ 1, x ≥ 1, y ≥ −3

Actually if we choose V , enclosing the piece-of-torus W , as the
rectangular box extending from 1 to 4 in x , -3 to 4 in y and -1 to 1 in z,
then we need only the first inequality. Thus we will choose random
points from this V region, and complete the Monte Carlo Integration.
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Gambling Mandelbrot set

The Mandelbrot set
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Gambling Mandelbrot set

The Mandelbrot set
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Gambling Mandelbrot set

The Mandelbrot set – fractal shape
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Gambling Mandelbrot set

The Mandelbrot set
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Gambling Mandelbrot set

The Mandelbrot set

The Mandelbrot set is the set of values of c in the complex plane for
which the orbit of 0 under iteration of the complex quadratic polynomial

zn+1 = zn
2 + c

remains bounded. That is, a complex number c is part of the
Mandelbrot set if, when starting with z0 = 0 and applying the iteration
repeatedly, the absolute value of zn remains bounded however large n
gets.
For example, letting c = 1 gives the sequence 0,1,2,5,26, . . . , which
tends to infinity. As this sequence is unbounded, 1 is not an element of
the Mandelbrot set. On the other hand, c = −1 gives the sequence
0,−1,0,−1,0. . . . , which is bounded, and so -1 belongs to the
Mandelbrot set.
(Coloring is artificial, usually denotes the number of steps.)
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Gambling Mandelbrot set

The Mandelbrot set
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Gambling Mandelbrot set

The Mandelbrot set

The Mandelbrot set M is defined by a family of complex quadratic
polynomials

Pc : C→ C given by Pc : z 7→ z2 + c,

where c is a complex parameter. Pn
c (z) denotes the nth iterate of Pc(z)

The Mandelbrot set is a compact set, contained in the closed disk of
radius 2 around the origin. In fact, a point c belongs to the Mandelbrot
set if and only if

|Pn
c (0)| ≤ 2 for all n ≥ 0.

In other words, if the absolute value of Pn
c (0) ever becomes larger than

2, the sequence will escape to infinity.
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Gambling Mandelbrot set

The Mandelbrot set

Computer programs iterate given number of steps and inspect if the
sequence escapes the disk of radius 2. The number is: zx + zy i ,

18: while( (n<iter_n) && (zx*zx + zy*zy)<4 )
19: {
20: new_zx = zx*zx - zy*zy + cx;
21: zy = 2*zx*zy + cy;
22: zx = new_zx;
23: n++;
24: }

We can check if n==iter_n for bound or escape, or color by the value
of n.
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Gambling Mandelbrot set

Problem: calculate the area of the Mandelbrot set

How do we
calculate the area
of a fractal shape?
By Monte Carlo
method!
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The Monte Carlo Method

Table of Contents

1 Random Algorithms
QuickSort
Primality test

2 Gambling
Calculating π
Parallel programming with MPI
Monte Carlo Integration
Mandelbrot set

3 The Monte Carlo Method
Randomness in Algorithms
Categorization of the Monte Carlo Methods

4 Parallel Las Vegas Algorithms

Bogdán Zaválnij (University of Pecs) Monte Carlo Methods 2014 40 / 47



The Monte Carlo Method Randomness in Algorithms

Randomness in Algorithms

How do we define the “Monte Carlo Method”?
Literally any algorithm, which use random numbers (or takes
random decision)
Probabilistic Monte Carlo Method – the random numbers simulate
directly the physical phenomena we would like to observe (direct
simulation by MC)

nuclear physics
random fluctuations in the telephone traffic
flood control and dam construction
bottlenecks and queueing systems in industrial production
processes
study of epidemics

Deterministic Monte Carlo Method – in problems we can formulate
in theoretical language, but cannot solve by theoretical means
(MC algorithms)

the Monte Carlo integration is an example
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The Monte Carlo Method Categorization of the Monte Carlo Methods

Categorization

We can categorize the deterministic Monte Carlo Method by the nature
of its error

Two sided error
typical for engineering simulations (the MC integration is an
example)
we have a ± error
the magnitude of the error controlled by the number of sampling
points
we can stop at any time

One sided error
the primality tests are good examples
we “ask” something, and get a probability answer with one sided
error
if the answer is “not prime”, it is 100% certain, if the answer is
“prime”, it is probable
we can speak about one sided error on true side, or false side
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The Monte Carlo Method Categorization of the Monte Carlo Methods

Categorization

We can categorize the deterministic Monte Carlo Method by the nature
of its error

Two sided error
typical for engineering simulations (the MC integration is an
example)
we have a ± error
the magnitude of the error controlled by the number of sampling
points
we can stop at any time

One sided error
the primality tests are good examples
we “ask” something, and get a probability answer with one sided
error
if the answer is “not prime”, it is 100% certain, if the answer is
“prime”, it is probable
we can speak about one sided error on true side, or false side

→ easy parallel implementation for both (mostly the first)
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The Monte Carlo Method Categorization of the Monte Carlo Methods

Categorization – cont.

Zero sided error
→ the algorithm runs with no error at all
QuickSort is a good example – we always get a sorted sequence
Definition: A is a Las Vegas algorithm for a problem class Π, if and
only if

if for a given problem instance π ∈ Π, algorithm A terminates
returning solution s, s is guaranteed to be a correct solution of π
for any given instance π ∈ Π, the run-time of A applied to π is a
random variable

(we can speak of certainly terminating algorithms as well)
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The Monte Carlo Method Categorization of the Monte Carlo Methods

Categorization – cont.

Zero sided error
→ the algorithm runs with no error at all
QuickSort is a good example – we always get a sorted sequence
Definition: A is a Las Vegas algorithm for a problem class Π, if and
only if

if for a given problem instance π ∈ Π, algorithm A terminates
returning solution s, s is guaranteed to be a correct solution of π
for any given instance π ∈ Π, the run-time of A applied to π is a
random variable

(we can speak of certainly terminating algorithms as well)

These algorithms called the Las Vegas algorithms

Bogdán Zaválnij (University of Pecs) Monte Carlo Methods 2014 43 / 47



Parallel Las Vegas Algorithms
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Parallel Las Vegas Algorithms

Parallelization of MC is straightforward
But how do we make a parallel Las Vegas Algorithm?
Different approaches, usually start n different appliances of the
algorithm, with different “starting points” (starting parameters),
and let the first “win”!
Parallel multi-walk Las Vegas algorithm, usually in discrete
optimization
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Parallel Las Vegas Algorithms – cont.

Definition: A′ is a multi-walk parallel Las Vegas algorithm for a
problem class Π, if and only if

It consists of n instances of sequential Las Vegas algorithm A for Π,
say A1, . . . ,An.
If, for a given problem instance π ∈ Π, there exists at least one
i ∈ [1,n] such that Ai terminates let Am,m ∈ [1,n] be the instance
of A terminating with the minimal runtime and let s be the solution
returned by Am. Then algorithm A′ terminates in the same time as
Am and returns solution s.
If, for a given problem instance π ∈ Π, all Ai , i ∈ [1.n] do not
terminate then A′ does not terminate.
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