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Spaces of non-positive curvature = CAT(0)

In 1987 M. Gromov introduces the notion of a CAT(k) space, in the
honour of E. Cartan, A.D. Alexandrov and V.A. Toponogov.

A metric space (X , d) is a CAT(0) space if it is geodesically connected
and if every geodesic triangle in X is at least as thin as its comparison
triangle in the Euclidean plane.



Geodesic space or geodesically connected space

Definition

A metric space (X , d) is geodesic if for any pair of points x and y of X , such

that d(x , y) = d , there exists an isometric operator γ : [0, d ]→ X such that

γ(0) = x , γ(d) = y and for all t, t′ ∈ [0, d ], |t − t′| = |γ(t)− γ(t′)|.
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CAT(0) space (global nonpositive curvature)

Definition

Let (X , d) be a geodesic space and T = ∆(x1, x2, x3) a geodesic triangle in X .

A comparison triangle of T is a triangle T ′ = ∆(x ′1, x
′
2, x
′
3) of the Euclidian

plane whose edges are of equal length as the edges of T in X .
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CAT(0) inequality: d(x3, y) ≤ dE2 (x′3, y
′), ∀y ∈ γ(x1x2).
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CAT(0) space (global non-positive curvature)

CAT(0) space (M. Gromov, 1987)

A geodesic space (X , d) is a CAT(0) space if the CAT(0) inequality is satisfied

for every geodesic triangle T = ∆(x1, x2, x3) of X and every point y of

γ(x1, x2).
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Examples of CAT(0) spaces:

Simple polygons,

Hyperbolic spaces,

Trees,

Euclidian buildings.
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CAT(0) space (global non-positive curvature)

Important properties of CAT(0) spaces:

uniqueness of a geodesic connecting two points

convexity of the distance function

global non-positive curvature

convexity of balls and neighborhoods of convex sets



CAT(0) cube complexes

A cube complex K is a polyhedral complex obtained by gluing solid
cubes of various dimensions in such a way that for any two cubes the
intersection is a face of both.
K has a natural piecewise Euclidean metric.

A cube complex is said to be CAT(0) if it is simply-connected and it has
non-positive curvature.



CAT(0) cube complexes

2-dimensional CAT(0) cube complex:

[Daina Taimina, 2005]
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[Daina Taimina, 2005]



CAT(0) cube complexes

2-dimensional CAT(0) cube complex:



Applications of CAT(0) cube complexes

Geometry group theory

Phylogenetic trees

Reconfigurable systems

...



Phylogenetic trees

A phylogenetic tree (or evolutionary tree) is a branching diagram
showing the inferred evolutionary relationships among various biological
species or other entities based upon similarities and differences in their
physical and/or genetic characteristics.



Phylogenetic trees

building trees based on DNA sequences

origins of diseases such as AIDS and the most deadly form of malaria

connections between tribal groups

. . .

uncertainty remains about precise relationships between the tips or
leaves of the tree.

Possible solution: cover all the possible trees with the same set of leaves.
There are (2n − 3)!! rooted binary trees.



Phylogenetic trees

building trees based on DNA sequences

origins of diseases such as AIDS and the most deadly form of malaria

connections between tribal groups

. . .

uncertainty remains about precise relationships between the tips or
leaves of the tree.

Possible solution: cover all the possible trees with the same set of leaves.
There are (2n − 3)!! rooted binary trees.



Phylogenetic trees

building trees based on DNA sequences

origins of diseases such as AIDS and the most deadly form of malaria

connections between tribal groups

. . .

uncertainty remains about precise relationships between the tips or
leaves of the tree.

Possible solution: cover all the possible trees with the same set of leaves.
There are (2n − 3)!! rooted binary trees.



Phylogenetic trees

building trees based on DNA sequences

origins of diseases such as AIDS and the most deadly form of malaria

connections between tribal groups

. . .

uncertainty remains about precise relationships between the tips or
leaves of the tree.

Possible solution: cover all the possible trees with the same set of leaves.
There are (2n − 3)!! rooted binary trees.



Phylogenetic trees

building trees based on DNA sequences

origins of diseases such as AIDS and the most deadly form of malaria

connections between tribal groups

. . .

uncertainty remains about precise relationships between the tips or
leaves of the tree.

Possible solution: cover all the possible trees with the same set of leaves.
There are (2n − 3)!! rooted binary trees.



Phylogenetic trees

building trees based on DNA sequences

origins of diseases such as AIDS and the most deadly form of malaria

connections between tribal groups

. . .

uncertainty remains about precise relationships between the tips or
leaves of the tree.

Possible solution: cover all the possible trees with the same set of leaves.
There are (2n − 3)!! rooted binary trees.



Space of phylogenetic trees ([2001] Billera, Holmes,
Vogtmann)

The space of phylogenetic trees with the same set of leaves

and with the intrinsic metric is a CAT(0) cube complex.



Phylogenetic tree topology ([2001] Billera, Holmes,
Vogtmann)

Identical trees



Phylogenetic tree topology ([2001] Billera, Holmes,
Vogtmann)

Distinct trees



Phylogenetic tree topology ([2001] Billera, Holmes,
Vogtmann)

Splits of a phylogenetic tree:
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Phylogenetic tree topology ([2001] Billera, Holmes,
Vogtmann)

Splits of a phylogenetic tree:

1 2 3 4
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e1 : (1) | (0234)
e2 : (2) | (0134)
e3 : (3) | (0124)
e4 : (4) | (0123)

e5 : (012) | (34)
e6 : (01) | (234)
e7 : (013) | (24)
e8 : (014) | (23)



Phylogenetic tree topology ([2001] Billera, Holmes,
Vogtmann)
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Space of phylogenetic trees ([2001] Billera, Holmes,
Vogtmann)

A 2-dimensional quadrant corresponding to a metric 4-tree T4



Space of phylogenetic trees ([2001] Billera, Holmes,
Vogtmann)

The space T4



Space of phylogenetic trees ([2001] Billera, Holmes,
Vogtmann)



Space of phylogenetic trees ([2001] Billera, Holmes,
Vogtmann)

O



Space of phylogenetic trees ([2001] Billera, Holmes,
Vogtmann)

Geodesics in T4



Space of phylogenetic trees ([2001] Billera, Holmes,
Vogtmann)

The space T3



Algorithmic problems in the space of phylogenetic trees

[2001] L.J. Billera, S.P. Holmes and K. Vogtmann
the space of phylogenetic trees

[2011] M. Owen and S. Provan
shortest path in the space of phylogenetic trees

[2012] F. Ardila, M. Owen and S. Sullivant
shortest path in CAT(0) cube complexes



Reconfigurable systems

Reconfigurable robotic systems are composed of a set of robots that
change their position relative to one another, thereby reshaping the
system.

A robotic system that changes its shape due to individual robotic motion
has been called metamorphic.



Reconfigurable systems

There are many models for such robots:

2D and 3D lattices;

hexagonal, square, and dodecahedral cells;

pivoting or sliding motion



Reconfigurable systems



Reconfigurable systems ([2004] Abrams, Ghrist and
Peterson)

Transition graph of the system - whose vertices are the states of the
system and whose edges correspond to the allowable moves between
them.

Abrams, Ghrist and Peterson observed that this graph is the 1-skeleton of
the state complex: a cube complex whose vertices are the states of the
system, whose edges correspond to allowable moves, and whose cubes
correspond to collections of moves which can be performed
simultaneously.



Reconfigurable systems ([2004] Abrams and Ghrist)



Reconfigurable systems ([2004] Abrams and Ghrist)



Reconfigurable systems ([2013] Ardila, Baker and Yatchak)



Related work on reconfigurable systems

[1991] V. Pratt

[2004] A. Abrams and R. Ghrist

[2007] R. Ghrist and V. Peterson

[2013] F. Ardila, T. Baker and R. Yatchak



CAT(0) rectangular complexes

Definition

A rectangular complex K is a 2-dimensional Euclidean cell complex K whose 2-cells

are isometric to axis-parallel rectangles of the l1-plane and the intersection of two

faces of K is either empty, either a vertex or an edge.



Intrinsic metric
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y

R

For all x , y ∈ R, d(x , y) = dE2(x , y)

x = z0

y = zm
z1

z2
zm−1

K

For all x ∈ R ′ and y ∈ R ′′

Let P = [x = z0z1 . . . zm−1zm = y ],
zi , zi+1 ∈ Ri , i = 0, . . . ,m − 1.

`(P) =
m−1∑
i=0

dE2(zi , zi+1),

d(x , y) = min
P
`(P)
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CAT(0) cube complexes

Chepoi, 2000

CAT(0) cube complexes coincide with the cubical cell complexes arising
from median graphs.



CAT(0) cube complexes

CAT(0) cube complexes can be described completely combinatorially.

Gromov characterization

A cubical polyhedral complex K with the intrinsic metric is CAT(0) if and
only if K is simply connected and satisfies the following condition:
whenever three (k + 2)-cubes of K share a common k-cube and pairwise
share common (k + 1)-cubes, they are contained in a (k + 3)-cube of K.



CAT(0) rectangular complexes

Gromov characterization

A rectangular complex K is a CAT(0) rectangular complex if and only if K is

simply connected and K does not contain any triplet of faces pairwise adjacent.



Examples of CAT(0) rectangular complexes

Squaregraphs Ramified rectilinear polygons



Shortest path in a CAT(0) rectangular complex

SPP(x , y)

Given two points x , y in a CAT(0) rectangular complex K, find the distance

d(x , y) and the unique shortest path γ(x , y) connecting x and y in K.

x

y

γ(x, y)

x

y

γ(x, y)



1-skeleton of a rectangular complex

Definition

The 1-skeleton of a rectangular complex K is a graph G(K) = (V (K),E(K)),

where V (K) is the vertex set of K and E(K) is the edge set of K.

G(K)K



Interval of two points

Definition

Given the vertices p and q in the 1-skeleton G(K) of K, the interval I (p, q) is
the set {z ∈ V (K) : dG (p, q) = dG (p, z) + dG (z , q)}.

q

p

I(p, q)

Let K(I (p, q)) be the

subcomplex of K
induced by the interval

I (p, q).
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Main result

Proposition 1

Given two points x and y in a CAT(0) rectangular complex K, let Rx ,Ry be the

cells of K containing these points, then γ(x , y) ⊂ K(I (p, q)), where p and q

are two vertices of Rx and Ry .

p

q
y

γ(x, y)

x

The same result is true for CAT(0) cubical complexes of any dimension.



Main result

Proposition 2

For each pair of points x , y of a CAT(0) rectangular complex K, there exists an
unfolding f of K(I (p, q)) in the plane R2 as a chain of monotone polygons.

Moreover, γ(x , y) = f −1(γ∗(f (x), f (y))).
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The main steps of the algorithm

1. Given the rectangular faces containing the points x and y , compute the
vertices p, q of K such that x , y ∈ K(I (p, q)).
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The main steps of the algorithm

2. Compute the boundary ∂G(I (p, q)).
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The main steps of the algorithm
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The main steps of the algorithm

3. Compute an unfolding f of ∂G(I (p, q)) in R2. Let P(I (p, q)) denote the
chain of monotone polygons bounded by f (∂G(I (p, q))).
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The main steps of the algorithm

4. Triangulate each monotone polygon constituting a block of P(I (p, q)).
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f(p)
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The main steps of the algorithm

5. In the triangulated polygon P(I (p, q)) compute the shortest path
γ∗(f (x), f (y)) = (f (x), z1, . . . , zm, f (y)) between f (x) and f (y) in P(I (p, q)),
where z1, . . . , zm are all vertices of P(I (p, q)).

f(x)

f(y)

f(p)

f(q)

γ∗(f(x), f(y))

z1

zm



The main steps of the algorithm

6. Return (x , f −1(z1), . . . , f −1(zm), y) as the shortest path γ(x , y) between the

points x and y .
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The main steps of the algorithm

1. Compute the vertices p, q in V (K) such that x , y ∈ K(I (p, q)),

2. Construct the boundary ∂G(I (p, q)),

3. Find the unfolding f of ∂G(I (p, q)) in R2,

4. Compute the shortest path γ∗(f (x), f (y)),

5. Return γ(x , y) := f −1(γ∗(f (x), f (y))).



Main result

Theorem

Given a CAT(0) rectangular complex K with n vertices, one can construct a
data structure D of size O(n2) so that, given any two points x , y ∈ K, we can
compute the shortest path γ(x , y) between x and y in O(d(p, q)) time.



Open questions

Design a subquadratic data structure D allowing to perform
two-point shortest path queries in CAT(0) rectangular complexes in
O(d(p, q)) time.

Construct a polynomial algorithm for the two-point shortest path
queries for all CAT(0) cubical complexes, in particular for
3-dimensional CAT(0) cubical complexes.
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”A smile is the shortest distance between two people.”

Victor Borge

Thank you!


