ERa — A Practical Approach to Parallel

Construction of Suffix Trees

Andrej (Andy) Brodnik!?, Matev# Jekovec!

1 University of Ljubljana, Faculty of Computer and Information Science
2 University of Primorska, Department of Information Sciences and Technologies

Dagstuhl, Data Structures and Advanced Models of
Computation on Big Data, February 24-28, 2014

Introduction
°

Text indexing problem

Introduction
°

Text indexing problem

Problem statement
Given unstructured input text T consisting of N characters from
alphabet X of size o build an index such that for query pattern P

we:
o determine whether P occurs in T in time O(P),
o find all occurrences of P in T in time O(P + occ),

o find the longest common prefix (LCP) of P and any suffix of
T in time O(LCP(P, T)).

Introduction

Text indexing problem

Problem statement
Given unstructured input text T consisting of N characters from
alphabet X of size o build an index such that for query pattern P
we:

o determine whether P occurs in T in time O(P),

o find all occurrences of P in T in time O(P + occ),

o find the longest common prefix (LCP) of P and any suffix of
T in time O(LCP(P, T)).

| A\

Solution

Suffix tree and suffix array (SA) with LCP information are
fundamental data structures for indexing unstructured text.

Introduction

Suffix tree construction algorithms

o Theoretical:

W ('73), McC ('78) | U ('95) | F-C et al. ('00)
O(N) O(N) O(NlgN)
No Yes Yes!
String String | Result+String
No No Yes
No No PDAM

!Bedathur and Haritsa (2004)

Introduction
.

Suffix tree construction algorithms

o Theoretical:

W ('73), McC ('78) | U ('95) | F-C et al. ('00)
O(N) O(N) O(NlgN)
No Yes Yes!
String String | Result+String
No No Yes
No No PDAM

@ Practical:

Bedathur and Haritsa (2004)

Introduction
.

Suffix tree construction algorithms

o Theoretical:

W ('73), McC ('78) | U ('95) | F-C et al. ('00)
O(N) O(N) O(NlgN)
No Yes Yes!
String String | Result+String
No No Yes
No No PDAM

@ Practical:

Bedathur and Haritsa (2004)

Introduction
°

Suffix tree construction lower bounds

. Q(Sort(N)) | Q(Sort(N))
° Sequential: Q(Sort(N)) | Q(Sort(N))
Q(Nlgo) bits | Q(Nlgo) bits
2EM model

3Uncompressed index in word RAM
*PEM model

Introduction
°

Suffix tree construction lower bounds

Q(Sort(N))

Q(Sort(N))

o Sequential: Q(Sort(N))

Q(Sort(N))

Q(Nligo) bits

Q(Nligo) bits

o Parallel on p processing units:

Q(Sort,(N))

Q(Sort,(N))

Q(Sort,(N)) | Q(Sort,(N))

Q(N1go) bits | Q(Nlgo) bits

2EM model
3Uncompressed index in word RAM

“PEM model

Introduction
°

Suffix tree construction lower bounds

s " Q(N) Q(Nlog N)

o Sequential:

auens a(y) |0 (Hesgd)
Q(Nlgo) bits | Q(Nlgo) bits

@ Parallel on p processing units:

p
N N

2 (75logy &)

Q(Nlgo) bits | Q(Nlgo) bits

2EM model

3Uncompressed index in word RAM
*PEM model

Introduction
°

Suffix tree construction lower bounds

s " Q(N) Q(Nlog N)

o Sequential:

auens a(y) |0 (Hesgd)
Q(Nlgo) bits | Q(Nlgo) bits

@ Parallel on p processing units:

p
N N

2 (75logy &)

Q(Nlgo) bits | Q(Nlgo) bits

2EM model

3Uncompressed index in word RAM
*PEM model

Introduction
°

Theory and Practice

o Substantial gap between the theoretical and practical results.

Introduction
°

Theory and Practice

o Substantial gap between the theoretical and practical results.

@ Practitioners (often) do not use theoretically the best results.

Introduction
°

Theory and Practice

o Substantial gap between the theoretical and practical results.
@ Practitioners (often) do not use theoretically the best results.

o Perhaps we should look at practical solutions more carefully.

ERa
®00

ERa — Elastic Range (Mansour et al. (2011))

o Currently the fastest practical, parallel suffix tree construction
algorithm.

ERa
®00

ERa — Elastic Range (Mansour et al. (2011))

o Currently the fastest practical, parallel suffix tree construction
algorithm.

o Time complexity: O(N?) w.c. — for (extremely) skewed text!

ERa
®00

ERa — Elastic Range (Mansour et al. (2011))

o Currently the fastest practical, parallel suffix tree construction
algorithm.

o Time complexity: O(N?) w.c. — for (extremely) skewed text!

@ Yet, it's fast in practice: Constructs and stores the human

genome's suffix tree in 20 minutes on 16-core desktop PC
with HDD or 13 minutes with SSD!

-] 1 A
In-memory trie AN

I \\ Grouping

Horizontal partitioning
A

/ \\ A

! \

Vertical ‘E)'grtitioning

ERa constructs the suffix tree in two steps:

In-memory trie /\
VRN

=)

g

2

=)

& /0 v ['y

= / | . / R

R I \ Grouping / Elastic |

N / / range |\

5 . (1 / € \

T i 4 I
\\; _ B S

Vertical p'fmitioning

ERa constructs the suffix tree in two steps:
@ The vertical partitioning step determines 1) the suffix
subtrees just fitting into M and 2) constructs the suffix tree
top.

In-memory trie "\
VAN

~

/

Horizontal partitioning

Vertical })’éﬂitioning

ERa constructs the suffix tree in two steps:
@ The vertical partitioning step determines 1) the suffix
subtrees just fitting into M and 2) constructs the suffix tree

Q The horizontal partitioning step builds the actual suffix

ERa

Algorithm 1: ERa
Input: String S, Alphabet ¥, Processors P, Private cache size M
Output: Suffix tree T
Ttop, G < VerticalPartitioning(S, %, M)
T < Ttop
while |G| > 0 do
for p € P do in parallel
if |G| > 0 then
7 < G.pop()
Tr < HorizontalPartitioning(S, X,)
Link(T,Tx)
end
end
end
return 7

O© 0 N O 0 & W N =

-
N = O

ERa
®0

Vertical partitioning

Define S-prefix 7 as the prefix of the suffix in the text;
fr = #of suffixes starting with 7; and 7 is a subtree with a root
corresponding .

ERa
®0

Vertical partitioning

Define S-prefix 7 as the prefix of the suffix in the text;
fr = #of suffixes starting with 7; and 7 is a subtree with a root
corresponding .

Idea: Approximate the size of 7, as cf,; for some constant ¢ and
expand the 7w so much, that cf, < M.

ERa
®0

Vertical partitioning

Define S-prefix 7 as the prefix of the suffix in the text;
fr = #of suffixes starting with 7; and 7 is a subtree with a root
corresponding .

Idea: Approximate the size of 7, as cf,; for some constant ¢ and
expand the 7w so much, that cf, < M.

@ Scan the text and obtain the characters frequency f; : m € &
(counted all S-prefixes of length 1)

ERa
®0

Vertical partitioning

Define S-prefix 7 as the prefix of the suffix in the text;
fr = #of suffixes starting with 7; and 7 is a subtree with a root
corresponding .

Idea: Approximate the size of 7, as cf,; for some constant ¢ and
expand the 7w so much, that cf, < M.

@ Scan the text and obtain the characters frequency f; : m € &
(counted all S-prefixes of length 1)

@ For each 7 : cfy > M, ' = 7¥ and count f,.

ERa
®0

Vertical partitioning

Define S-prefix 7 as the prefix of the suffix in the text;
fr = #of suffixes starting with 7; and 7 is a subtree with a root
corresponding .

Idea: Approximate the size of 7, as cf,; for some constant ¢ and
expand the 7w so much, that cf, < M.

@ Scan the text and obtain the characters frequency f; : m € &
(counted all S-prefixes of length 1)
@ For each 7 : cfy > M, ' = 7¥ and count f,.

© Repeat step two for S-prefixes of length 3,4, ..., until all 7,
just fits into the memory M.

ERa
®0

Vertical partitioning

Define S-prefix 7 as the prefix of the suffix in the text;
fr = #of suffixes starting with 7; and 7 is a subtree with a root
corresponding .

Idea: Approximate the size of 7T as cf; for some constant ¢ and
expand the 7w so much, that cf, < M.

@ Scan the text and obtain the characters frequency f; : m € &
(counted all S-prefixes of length 1)

Q For each m: cf, > M, 7’ = w¥ and count f.

© Repeat step two for S-prefixes of length 3,4, ..., until all 7
just fits into the memory M.

Extra : To optimally fill the main memory, combine the S-prefixes
into virtual groups G, fitting into the main memory as tight as
possible (use First-Fit Decreasing heuristic for bin packing
problem)

ERa

oe

Vertical partitioning — Example

7= ACC, facc = 12
TAACCCTA
ACCCTAAC
CCTAACCC
TAACCCTA
ACCCTAAC
CCTAACCC
TAACCCTA
ACCCTAAC
CCTAACCC
TAACCCTA
ACCCTAAC
CCTAACCC
TAAC

ERa
°

Horizontal partitioning

For a prefix 7 (virtual group G) construct the suffix subtree:

ERa
°

Horizontal partitioning

For a prefix 7 (virtual group G) construct the suffix subtree:

Q@ Locate and store all n = f; positions of ™ — we will sort n
strings in-memory; i.e. all strings are ambigous.

ERa
°

Horizontal partitioning

For a prefix 7 (virtual group G) construct the suffix subtree:
Q@ Locate and store all n = f; positions of ™ — we will sort n
strings in-memory; i.e. all strings are ambigous.

O Optimal prefix length range of chars following m r = p7 -
Elastic Range.

ERa
°

Horizontal partitioning

For a prefix 7 (virtual group G) construct the suffix subtree:
Q@ Locate and store all n = f; positions of ™ — we will sort n
strings in-memory; i.e. all strings are ambigous.

O Optimal prefix length range of chars following m r = p7 -
Elastic Range.

O Read the next r characters for each string.

ERa
°

Horizontal partitioning

For a prefix 7 (virtual group G) construct the suffix subtree:
Q@ Locate and store all n = f; positions of ™ — we will sort n
strings in-memory; i.e. all strings are ambigous.

O Optimal prefix length range of chars following m r = p7 -
Elastic Range.

O Read the next r characters for each string.

@ Sort strings in-memory and record branching information
(=LCP) and the original position (=SA).

ERa
°

Horizontal partitioning

For a prefix 7 (virtual group G) construct the suffix subtree:

o

Locate and store all n = f; positions of m — we will sort n
strings in-memory; i.e. all strings are ambigous.

Optimal prefix length range of chars following 7 r = p% -
Elastic Range.

Read the next r characters for each string.

Sort strings in-memory and record branching information
(=LCP) and the original position (=SA).

Let n be the number of strings that are still ambigous; go to
step 2 until n =0 (as r increases n decreases).

ERa
°

Horizontal partitioning

For a prefix 7 (virtual group G) construct the suffix subtree:

o

Locate and store all n = f; positions of m — we will sort n
strings in-memory; i.e. all strings are ambigous.

Optimal prefix length range of chars following 7 r = p% -
Elastic Range.

Read the next r characters for each string.

Sort strings in-memory and record branching information
(=LCP) and the original position (=SA).

Let n be the number of strings that are still ambigous; go to
step 2 until n =0 (as r increases n decreases).

Construct suffix subtree in DF manner using SA and LCP.

Analysis of ERa
°

Model of computation

Parallel External Memory model (PEM):5

©

Shared memory model,
o 2-level memory hierarchy:

Caches

o p processors, each with)
private cache of size M 8
bytes. T

CPU,

o parallel memory transfers S S—

in blocks of size B bytes. %o o o
A T

o Performance metrics: et
o parallel time, ' e o o

o parallel block transfers CPU, e e e

e o o

%blocks

(cache complexity).

o Concurrent reads assumed.

®Arge, Goodrich, Nelson, Sitchinava 2008

Memory
(n)

o e o

e eooo

o0 o0 oo

Analysis of ERa
.

Assumptions and Definitions

o Alphabet X of size o; the number of processors p; the size of
block B; the size of memory M; and the length of input string
N.

o The worst-case the input text is skewed: T = AAA...

Analysis of ERa
.

Assumptions and Definitions

o Alphabet X of size o; the number of processors p; the size of
block B; the size of memory M; and the length of input string
N.

o The worst-case the input text is skewed: T = AAA...

o Vertical partitioning expands S-prefixes by one character at
the time.

. 2 .
o Requires N scans, that equals NT comparisons.

@ Cache complexity O(%z).

Analysis of ERa
.

Assumptions and Definitions

o Alphabet X of size o; the number of processors p; the size of
block B; the size of memory M; and the length of input string
N.

o The worst-case the input text is skewed: T = AAA...

o Vertical partitioning expands S-prefixes by one character at
the time.

. 2 .
o Requires N scans, that equals NT comparisons.
. 2
o Cache complexity O(%).
Our assumption:

@ Input text is random (viable for a single genome, proteins).
1

o"

@ At any place the probability of each character to occur is

o The suffix tree build from a random string is shallowest
(Szpankowski 1993).

Analysis of ERa
[1}

Analysis: Vertical partitioning

Assume M < v/N.

o Extending 7 by one from 1 till log, % and hence this many
scans of the text.
o Sorting P = N/M prefixes.

o Packing prefixes into virtual groups.

Analysis of ERa
[1}

Analysis: Vertical partitioning

Assume M < v/N.

o Extending 7 by one from 1 till log, % and hence this many
scans of the text.

o Sorting P = N/M prefixes.

o Packing prefixes into virtual groups.

o Consequently the number of 1/Os

N (N N N
O<|og"ﬁ'<§+M>+M-BloggI\/I-B)

Analysis of ERa
oe

Analysis: Horizontal partitioning

For building of P subtrees by p processors, where each subtree:

o Designed that data structure fits into memory.

Analysis of ERa
oe

Analysis: Horizontal partitioning

For building of P subtrees by p processors, where each subtree:

o Designed that data structure fits into memory.

o Consequently the number of I/Os

N N

Empirical evaluation
°

Evaluation: environment

Computer and environment:
@ 2x 16-core AMD Opteron 6272 ©@2,100 MHz
e 128 GiB RAM
o Seagate Baracuda 250 GB, 7,200 RPM, 32 MiB cache, SATA
@ Ubuntu server 12.04, Linux kernel 3.11.0
o ext4 file system, deadline |/O scheduler
o MPI programming
ERa parameters:
o Memory size per core: 2 GiB
o Input text: Human genome HG18.txt, 2.8 Gbp
ERa output:
o Total suffix tree size: 77.3 GB stored in 187 files
© Tiop size: 10.2 KB

Empirical evaluation
©000000000

Results — 1

4500 120.00%

100.00%
3000 80.00%
60.00%
40.00%

running time [s]
N
S
3
3
efficiency

20.00%

0 0.00%
1 2 3 4 6 8 12 16 20 24 28 32 1 2 3 4 6 8 12 16 20 24 28 32

p

40000
35000
30000
25000
20000
15000
10000

5000

N w s 0o

work [s]
speedup

12 3 4 6 8 12 16 20 24 28 32 1 2 3 4 6 8 12 16 20 24 28 32

The time increases as we increase the number of cores.

Empirical evaluation
0O®00000000

Results — 2

So what is the machine doing?

Empirical evaluation
0O®00000000

Results — 2

So what is the machine doing?

init Initialization including broadcasting to MPI clients.

cnt®, entl Vertical partitioning: counting the frequency and
locating the S-prefixes in the input text.

filbuf Horizontal partitioning: reading the input text.
sort Horizontal partitioning: in-memory string sorting.

write Horizontal partitioning: writing the final result to
disk.

Empirical evaluation
0O®0000000

Results — 2 contd.

parallel10_devnulprobability CPU times p00.

1, t=5972.05, S:pDD

i = | 2l

p = 2, t=3463.05, 5=p00
N IIH { i) vml
o p |||| i

”I ‘\Ih\
rwny \u n‘ v‘m

P = 3, t=2507.05, 5=p00

P = ’
s i

Uhteats e

-

1000 2000 3000 4000 5000 6000 5001000 1500 2000 2500 3000 3500 500 1000 1500 2000 2500 3

500 1000 1500 2000 2
1678.05, 5=p00 p =8, t=1398.05, 5=p00 p = 12, t=1303.05, 5=p00 P = 16, t=1243.05, 5=p00
]
12905
sof t1=65s |
24774
a0 b
JE:]I
30)
20|
10
o0 %

200 400 600 800 1000 1200 1400 200 400 600 800 1000 1200 1 200 400 600 800 1000 1200 1
28, t=1295.05, 5=p00

P = 32, t=1306.05, 5=p00
init=8283s
=985

200 400 600 800 1000 1200 1400 200 400 600 800 1000 1200 1400

200 400 600 800 1000 1200 1400

Al
400 600 800 1000 1200 1400

Empirical evaluation
000®000000

Hypotheis 1

Observation 1: The majority of time is spent writing the final
result to the disk.

Empirical evaluation
000®000000

Hypotheis 1

Observation 1: The majority of time is spent writing the final
result to the disk.

Hypothesis 1: Problem is the disk performance, so replace HDD
with SSD.

Results — 3

1, £=5657.05, 5=p00

1000 2000 3000 4000 5000 6
, t=1304.05, 5=p00

00

Empirical evaluation
0000®00000

parallel10_devnullprobability_ssd CPU times p00

b = 2, 1230680
T
I Ihf

I
i

o |

500 1000 1500 2000 2500 3000 3
, t=1049.05, 5=p00

P = 3, t=2183.05, 5=p00

P = 4, t=1700.05, s=p00

1000 1500 2000 2

200 400 600 800 1000 1200 1

600 800 1000 1.

100 200 300 400 500 600 700 800 O

0

97100 200 300 400 500 600 700 &

100 200 300 400 500 600 700 800 3¢

0100 200 300 400 500 600 700 8¢

Empirical evaluation
00000@0000

Hypotheis 2

Observation 2: The amount of time for writting decreased, but as
the number of cores grows, it is still substantial.

Empirical evaluation
00000@0000

Hypotheis 2

Observation 2: The amount of time for writting decreased, but as
the number of cores grows, it is still substantial.

Hypothesis 2: There it is still a problem with a disk performance
and consequently further speed-up disk by writting to /dev/null.

Empirical evaluation
000000e000

Results — 4

times per # o poc.,devinul prob. wise

orobabilty = 0.0 probabilty = 0. orobabilty = 0. probabilty = 0.
oo
so00
Zaom 5 H
[[i
2000
L L
1000 —— e P L LY - e
R R S 3 D 5 s s 5 3
probSiRYS 0.4 probBfYS o. probsIRYE probbSiRS 0.7
sooo
sono
o z
E 000 t
2000
U [SN S N DS SN O T S e by
R N R R 5 S Y 5 s H 3
ot ot o ot Votnr
probB8HRY o probBif% o probaBif
oo
so00)
aom 5
[: i
2000
R S ot e O DU S s e
s 3 T 5 o T)
¥ ot ¥ ot ot v

Empirical evaluation
0000000e00

Hypotheis 3

Observation 3: Things are getting better, but there is still an
increase in time when the number of cores is increased.

Empirical evaluation
0000000e00

Hypotheis 3

Observation 3: Things are getting better, but there is still an
increase in time when the number of cores is increased.

Hypothesis 3: 77

Check in more detail what the processes are doing.

Empirical evaluation
0000000080

Results = 5 (p

parallel10_devnullprobability CPU times per CPU, 00

t=1243.0

Empirical evaluation

000000000 e

parallel10_devnullprobability CPU times per CPU, p00

0 200 400 05 32, t=1306.0 800 1000

1200

200

- init=8283s
. cntl1=98s
. cntt=32325
B filbuf=1617s
B sort=2821s
== write=20007s

Conclusion

Conclusion

o There is a substantial gap between theoretical results and
practically used solutions.

o ERa despite being practically the fastest algorithm is not
theoretically tight — even for random input strings with
uniform substring distribution.

Conclusion

Conclusion

o There is a substantial gap between theoretical results and
practically used solutions.

o ERa despite being practically the fastest algorithm is not
theoretically tight — even for random input strings with
uniform substring distribution.

Open challenges:
@ Analyse ERa bottlenecks for further improvements (see if they
match the critical terms in time and 1/O complexities).
@ Shall we choose some other basic technique for the
implementation of a practical algorithm?
@ Design a theoretically tight yet practically competitive parallel
algorithm for suffix tree construction.

Thanx for your attention!

	Introduction
	Text indexing problem
	Suffix tree construction times
	Suffix tree construction lower bounds
	Theory and Practice

	ERa
	Overview
	Vertical partitioning
	Horizontal partitioning

	Analysis of ERa
	Model of computation
	Assumptions and Definitions
	Analysis

	Empirical evaluation
	Environment
	Results

	Conclusion

