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Problem statement
Given unstructured input text T consisting of N characters from
alphabet X of size o build an index such that for query pattern P

we:
o determine whether P occurs in T in time O(P),
o find all occurrences of P in T in time O(P + occ),

o find the longest common prefix (LCP) of P and any suffix of
T in time O(LCP(P, T)).
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Solution

Suffix tree and suffix array (SA) with LCP information are
fundamental data structures for indexing unstructured text.
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Theory and Practice

o Substantial gap between the theoretical and practical results.
@ Practitioners (often) do not use theoretically the best results.

o Perhaps we should look at practical solutions more carefully.
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ERa — Elastic Range (Mansour et al. (2011))

o Currently the fastest practical, parallel suffix tree construction
algorithm.

o Time complexity: O(N?) w.c. — for (extremely) skewed text!

@ Yet, it's fast in practice: Constructs and stores the human

genome's suffix tree in 20 minutes on 16-core desktop PC
with HDD or 13 minutes with SSD!
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ERa constructs the suffix tree in two steps:
@ The vertical partitioning step determines 1) the suffix
subtrees just fitting into M and 2) constructs the suffix tree
top.
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ERa constructs the suffix tree in two steps:
@ The vertical partitioning step determines 1) the suffix
subtrees just fitting into M and 2) constructs the suffix tree

Q The horizontal partitioning step builds the actual suffix



ERa

Algorithm 1: ERa
Input: String S, Alphabet ¥, Processors P, Private cache size M
Output: Suffix tree T
Ttop, G < VerticalPartitioning(S, %, M)
T < Ttop
while |G| > 0 do
for p € P do in parallel
if |G| > 0 then
7 < G.pop()
Tr < HorizontalPartitioning(S, X, )
Link(T,Tx)
end
end
end
return 7

O© 0 N O 0 & W N =

-
N = O
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Vertical partitioning

Define S-prefix 7 as the prefix of the suffix in the text;
fr = #of suffixes starting with 7; and 7 is a subtree with a root
corresponding .

Idea: Approximate the size of 7T as cf; for some constant ¢ and
expand the 7w so much, that cf, < M.

@ Scan the text and obtain the characters frequency f; : m € &
(counted all S-prefixes of length 1)

Q For each m: cf, > M, 7’ = w¥ and count f.

© Repeat step two for S-prefixes of length 3,4, ..., until all 7
just fits into the memory M.

Extra : To optimally fill the main memory, combine the S-prefixes
into virtual groups G, fitting into the main memory as tight as
possible (use First-Fit Decreasing heuristic for bin packing
problem)
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Vertical partitioning — Example

7= ACC, facc = 12
TAACCCTA
ACCCTAAC
CCTAACCC
TAACCCTA
ACCCTAAC
CCTAACCC
TAACCCTA
ACCCTAAC
CCTAACCC
TAACCCTA
ACCCTAAC
CCTAACCC
TAAC
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Horizontal partitioning

For a prefix 7 (virtual group G) construct the suffix subtree:

o

Locate and store all n = f; positions of m — we will sort n
strings in-memory; i.e. all strings are ambigous.

Optimal prefix length range of chars following 7 r = p% -
Elastic Range.

Read the next r characters for each string.

Sort strings in-memory and record branching information
(=LCP) and the original position (=SA).

Let n be the number of strings that are still ambigous; go to
step 2 until n =0 (as r increases n decreases).

Construct suffix subtree in DF manner using SA and LCP.
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Model of computation

Parallel External Memory model (PEM):5

©

Shared memory model,
o 2-level memory hierarchy:

Caches

o p processors, each with )
private cache of size M 8
bytes. T

CPU,

o parallel memory transfers S S—

in blocks of size B bytes. %o o o
A T

o Performance metrics: et
o parallel time, ' e o o

o parallel block transfers CPU, e e e

e o o

%blocks

(cache complexity).

o Concurrent reads assumed.

®Arge, Goodrich, Nelson, Sitchinava 2008

Memory
(n)

o e o

e eooo

o0 o0 oo
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Assumptions and Definitions

o Alphabet X of size o; the number of processors p; the size of
block B; the size of memory M; and the length of input string
N.

o The worst-case the input text is skewed: T = AAA...

o Vertical partitioning expands S-prefixes by one character at
the time.

. 2 .
o Requires N scans, that equals NT comparisons.
. 2
o Cache complexity O(%).
Our assumption:

@ Input text is random (viable for a single genome, proteins).
1

o"

@ At any place the probability of each character to occur is

o The suffix tree build from a random string is shallowest
(Szpankowski 1993).
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Analysis: Vertical partitioning

Assume M < v/N.

o Extending 7 by one from 1 till log, % and hence this many
scans of the text.
o Sorting P = N/M prefixes.

o Packing prefixes into virtual groups.
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Analysis: Vertical partitioning

Assume M < v/N.

o Extending 7 by one from 1 till log, % and hence this many
scans of the text.

o Sorting P = N/M prefixes.

o Packing prefixes into virtual groups.

o Consequently the number of 1/Os

N (N N N
O<|og"ﬁ'<§+M>+M-BloggI\/I-B)
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o Designed that data structure fits into memory.
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Analysis: Horizontal partitioning

For building of P subtrees by p processors, where each subtree:

o Designed that data structure fits into memory.

o Consequently the number of I/Os

N N



Empirical evaluation
°

Evaluation: environment

Computer and environment:
@ 2x 16-core AMD Opteron 6272 ©@2,100 MHz
e 128 GiB RAM
o Seagate Baracuda 250 GB, 7,200 RPM, 32 MiB cache, SATA
@ Ubuntu server 12.04, Linux kernel 3.11.0
o ext4 file system, deadline |/O scheduler
o MPI programming
ERa parameters:
o Memory size per core: 2 GiB
o Input text: Human genome HG18.txt, 2.8 Gbp
ERa output:
o Total suffix tree size: 77.3 GB stored in 187 files
© Tiop size: 10.2 KB
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The time increases as we increase the number of cores.
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Results — 2

So what is the machine doing?

init Initialization including broadcasting to MPI clients.

cnt®, entl Vertical partitioning: counting the frequency and
locating the S-prefixes in the input text.

filbuf Horizontal partitioning: reading the input text.
sort Horizontal partitioning: in-memory string sorting.

write Horizontal partitioning: writing the final result to
disk.
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Results — 2 contd.
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000®000000

Hypotheis 1

Observation 1: The majority of time is spent writing the final
result to the disk.

Hypothesis 1: Problem is the disk performance, so replace HDD
with SSD.
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Empirical evaluation
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Observation 2: The amount of time for writting decreased, but as
the number of cores grows, it is still substantial.
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00000@0000

Hypotheis 2

Observation 2: The amount of time for writting decreased, but as
the number of cores grows, it is still substantial.

Hypothesis 2: There it is still a problem with a disk performance
and consequently further speed-up disk by writting to /dev/null.
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Observation 3: Things are getting better, but there is still an
increase in time when the number of cores is increased.
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0000000e00

Hypotheis 3

Observation 3: Things are getting better, but there is still an
increase in time when the number of cores is increased.

Hypothesis 3: 77

Check in more detail what the processes are doing.
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parallel10_devnullprobability CPU times per CPU, p00
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Conclusion

o There is a substantial gap between theoretical results and
practically used solutions.

o ERa despite being practically the fastest algorithm is not
theoretically tight — even for random input strings with
uniform substring distribution.

Open challenges:
@ Analyse ERa bottlenecks for further improvements (see if they
match the critical terms in time and 1/O complexities).
@ Shall we choose some other basic technique for the
implementation of a practical algorithm?
@ Design a theoretically tight yet practically competitive parallel
algorithm for suffix tree construction.



Thanx for your attention!
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