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Text indexing problem

Problem statement

Given unstructured input text T consisting of N characters from
alphabet Σ of size σ build an index such that for query pattern P
we:

determine whether P occurs in T in time O(P),

find all occurrences of P in T in time O(P + occ),

find the longest common prefix (LCP) of P and any suffix of
T in time O(LCP(P,T )).

Solution

Suffix tree and suffix array (SA) with LCP information are
fundamental data structures for indexing unstructured text.
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Suffix tree construction algorithms

Theoretical:

W (’73), McC (’78) U (’95) F-C et al. (’00)

Work w. c. O(N) O(N) O(N lg N)

Online No Yes Yes1

I/O efficiency String String Result+String

Unbounded Σ No No Yes

Parallel No No PDAM

Practical:

Semi-disk-based Out-of-core
TDD TRLS. B2ST WF ERa PCF
(’04) (’07) (’09) (’09) (’11) (’13)

Work w. c. O(N2) O(N2) O(N2) O(N2) O(N2) O(pN lg N)

I/O eff. R. R. R.+S. R.+S. R.+S. R.+S.

Unbnd. Σ No No No No No No

Parallel No No No Yes Yes Yes

1Bedathur and Haritsa (2004)
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Suffix tree construction lower bounds

Sequential:

bounded Σ unbounded Σ

Time Ω(Sort(N)) Ω(Sort(N))

I/Os2 Ω(Sort(N)) Ω(Sort(N))

Space3 Ω(N lg σ) bits Ω(N lg σ) bits

Parallel on p processing units:
bounded Σ unbounded Σ

Parallel time Ω
(
N
p

)
Ω
(
N
p log N

)
Parallel I/Os4 Ω

(
N
pB

)
Ω
(

N
pB logM

B

N
B

)
Space3 Ω(N lg σ) bits Ω(N lg σ) bits

2EM model
3Uncompressed index in word RAM
4PEM model



Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Suffix tree construction lower bounds

Sequential:

bounded Σ unbounded Σ

Time Ω(Sort(N)) Ω(Sort(N))

I/Os2 Ω(Sort(N)) Ω(Sort(N))

Space3 Ω(N lg σ) bits Ω(N lg σ) bits

Parallel on p processing units:
bounded Σ unbounded Σ

Parallel time Ω(Sortp(N)) Ω(Sortp(N))

Parallel I/Os4 Ω(Sortp(N)) Ω(Sortp(N))

Space3 Ω(N lg σ) bits Ω(N lg σ) bits

2EM model
3Uncompressed index in word RAM
4PEM model



Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Suffix tree construction lower bounds

Sequential:

bounded Σ unbounded Σ

Time Ω(N) Ω(N log N)

I/Os2 Ω
(
N
B

)
Ω
(
N
B logM

B

N
B

)
Space3 Ω(N lg σ) bits Ω(N lg σ) bits

Parallel on p processing units:
bounded Σ unbounded Σ

Parallel time Ω
(
N
p

)
Ω
(
N
p log N

)
Parallel I/Os4 Ω

(
N
pB

)
Ω
(

N
pB logM

B

N
B

)
Space3 Ω(N lg σ) bits Ω(N lg σ) bits

2EM model
3Uncompressed index in word RAM
4PEM model



Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Suffix tree construction lower bounds

Sequential:

bounded Σ unbounded Σ

Time Ω(N) Ω(N log N)

I/Os2 Ω
(
N
B

)
Ω
(
N
B logM

B

N
B

)
Space3 Ω(N lg σ) bits Ω(N lg σ) bits

Parallel on p processing units:
bounded Σ unbounded Σ

Parallel time Ω
(
N
p

)
Ω
(
N
p log N

)
Parallel I/Os4 Ω

(
N
pB

)
Ω
(

N
pB logM

B

N
B

)
Space3 Ω(N lg σ) bits Ω(N lg σ) bits

2EM model
3Uncompressed index in word RAM
4PEM model



Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Theory and Practice

Substantial gap between the theoretical and practical results.

Practitioners (often) do not use theoretically the best results.

Perhaps we should look at practical solutions more carefully.
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ERa — Elastic Range (Mansour et al. (2011))

Currently the fastest practical, parallel suffix tree construction
algorithm.

Time complexity: O(N2) w.c. – for (extremely) skewed text!

Yet, it’s fast in practice: Constructs and stores the human
genome’s suffix tree in 20 minutes on 16-core desktop PC
with HDD or 13 minutes with SSD!
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ERa

ERa constructs the suffix tree in two steps:

1 The vertical partitioning step determines 1) the suffix
subtrees just fitting into M and 2) constructs the suffix tree
top.

2 The horizontal partitioning step builds the actual suffix
subtrees.
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ERa

Algorithm 1: ERa

Input: String S , Alphabet Σ, Processors P, Private cache size M
Output: Suffix tree T

1 Ttop,G ← VerticalPartitioning(S ,Σ,M)
2 T ← Ttop
3 while |G | > 0 do
4 for p ∈ P do in parallel
5 if |G | > 0 then
6 π ← G .pop()
7 Tπ ← HorizontalPartitioning(S ,Σ, π)
8 Link(T , Tπ)

9 end

10 end

11 end
12 return T



Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Vertical partitioning

Define S-prefix π as the prefix of the suffix in the text;
fπ = #of suffixes starting with π; and Tπ is a subtree with a root

corresponding π.

Idea: Approximate the size of Tπ as cfπ for some constant c and
expand the π so much, that cfπ ≤ M.

1 Scan the text and obtain the characters frequency fπ : π ∈ Σ
(counted all S-prefixes of length 1)

2 For each π : cfπ > M, π′ = πΣ and count fπ′ .
3 Repeat step two for S-prefixes of length 3, 4, ..., until all Tπ

just fits into the memory M.

Extra : To optimally fill the main memory, combine the S-prefixes
into virtual groups G , fitting into the main memory as tight as
possible (use First-Fit Decreasing heuristic for bin packing
problem)
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Vertical partitioning — Example

π = ACC , fACC = 12

TAACCCTA
ACCCTAAC
CCTAACCC
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Horizontal partitioning

For a prefix π (virtual group G ) construct the suffix subtree:

1 Locate and store all n = fπ positions of π – we will sort n
strings in-memory; i.e. all strings are ambigous.

2 Optimal prefix length range of chars following π r = ρM
n –

Elastic Range.

3 Read the next r characters for each string.

4 Sort strings in-memory and record branching information
(=LCP) and the original position (=SA).

5 Let n be the number of strings that are still ambigous; go to
step 2 until n = 0 (as r increases n decreases).

6 Construct suffix subtree in DF manner using SA and LCP.
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Model of computation

Parallel External Memory model (PEM):5

Shared memory model,

2-level memory hierarchy:

p processors, each with
private cache of size M
bytes.
parallel memory transfers
in blocks of size B bytes.

Performance metrics:

parallel time,
parallel block transfers
(cache complexity).

Concurrent reads assumed.

B

Memory
(n)

CPU1

Caches
(M)
B

blocksM
B

CPU2

CPUp

5Arge, Goodrich, Nelson, Sitchinava 2008
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Assumptions and Definitions

Alphabet Σ of size σ; the number of processors p; the size of
block B; the size of memory M; and the length of input string
N.

The worst-case the input text is skewed: T = AAA...

Vertical partitioning expands S-prefixes by one character at
the time.

Requires N scans, that equals N2

2 comparisons.

Cache complexity O(N
2

B ).

Our assumption:

Input text is random (viable for a single genome, proteins).

At any place the probability of each character to occur is 1
σ .

The suffix tree build from a random string is shallowest
(Szpankowski 1993).
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Analysis: Vertical partitioning

Assume M <
√

N.

Extending π by one from 1 till logσ
N
M and hence this many

scans of the text.

Sorting P = N/M prefixes.

Packing prefixes into virtual groups.

Consequently the number of I/Os

O

(
logσ

N

M
·
(

N

B
+ M2

)
+

N

M · B
logM

B

N

M · B

)
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Analysis: Horizontal partitioning

For building of P subtrees by p processors, where each subtree:

Designed that data structure fits into memory.

Consequently the number of I/Os

O

(
N

B
· logσ

N

M

)
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Evaluation: environment

Computer and environment:

2× 16-core AMD Opteron 6272 @2,100 MHz

128 GiB RAM

Seagate Baracuda 250 GB, 7,200 RPM, 32 MiB cache, SATA

Ubuntu server 12.04, Linux kernel 3.11.0

ext4 file system, deadline I/O scheduler

MPI programming

ERa parameters:

Memory size per core: 2 GiB

Input text: Human genome HG18.txt, 2.8 Gbp

ERa output:

Total suffix tree size: 77.3 GB stored in 187 files

Ttop size: 10.2 KB
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Results – 1

The time increases as we increase the number of cores.
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Results – 2

So what is the machine doing?

init Initialization including broadcasting to MPI clients.

cnt*, cnt1 Vertical partitioning: counting the frequency and
locating the S-prefixes in the input text.

filbuf Horizontal partitioning: reading the input text.

sort Horizontal partitioning: in-memory string sorting.

write Horizontal partitioning: writing the final result to
disk.
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Results – 2 contd.
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Hypotheis 1

Observation 1: The majority of time is spent writing the final
result to the disk.

Hypothesis 1: Problem is the disk performance, so replace HDD
with SSD.
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Results – 3
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Hypotheis 2

Observation 2: The amount of time for writting decreased, but as
the number of cores grows, it is still substantial.

Hypothesis 2: There it is still a problem with a disk performance
and consequently further speed-up disk by writting to /dev/null.
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Results – 4
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Hypotheis 3

Observation 3: Things are getting better, but there is still an
increase in time when the number of cores is increased.

Hypothesis 3: ??

Check in more detail what the processes are doing.
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Results – 5 (p = 16)
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Results – 5 (p = 32)
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Conclusion

There is a substantial gap between theoretical results and
practically used solutions.

ERa despite being practically the fastest algorithm is not
theoretically tight – even for random input strings with
uniform substring distribution.

Open challenges:

Analyse ERa bottlenecks for further improvements (see if they
match the critical terms in time and I/O complexities).

Shall we choose some other basic technique for the
implementation of a practical algorithm?

Design a theoretically tight yet practically competitive parallel
algorithm for suffix tree construction.
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Thanx for your attention!
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