
ERa — A Practical Approach to Parallel
Construction of Suffix Trees

Andrej (Andy) Brodnik1,2, Matevž Jekovec1

1 University of Ljubljana, Faculty of Computer and Information Science
2 University of Primorska, Department of Information Sciences and Technologies

Dagstuhl, Data Structures and Advanced Models of
Computation on Big Data, February 24-28, 2014

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Text indexing problem

Problem statement

Given unstructured input text T consisting of N characters from
alphabet Σ of size σ build an index such that for query pattern P
we:

determine whether P occurs in T in time O(P),

find all occurrences of P in T in time O(P + occ),

find the longest common prefix (LCP) of P and any suffix of
T in time O(LCP(P,T)).

Solution

Suffix tree and suffix array (SA) with LCP information are
fundamental data structures for indexing unstructured text.

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Text indexing problem

Problem statement

Given unstructured input text T consisting of N characters from
alphabet Σ of size σ build an index such that for query pattern P
we:

determine whether P occurs in T in time O(P),

find all occurrences of P in T in time O(P + occ),

find the longest common prefix (LCP) of P and any suffix of
T in time O(LCP(P,T)).

Solution

Suffix tree and suffix array (SA) with LCP information are
fundamental data structures for indexing unstructured text.

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Text indexing problem

Problem statement

Given unstructured input text T consisting of N characters from
alphabet Σ of size σ build an index such that for query pattern P
we:

determine whether P occurs in T in time O(P),

find all occurrences of P in T in time O(P + occ),

find the longest common prefix (LCP) of P and any suffix of
T in time O(LCP(P,T)).

Solution

Suffix tree and suffix array (SA) with LCP information are
fundamental data structures for indexing unstructured text.

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Suffix tree construction algorithms

Theoretical:

W (’73), McC (’78) U (’95) F-C et al. (’00)

Work w. c. O(N) O(N) O(N lg N)

Online No Yes Yes1

I/O efficiency String String Result+String

Unbounded Σ No No Yes

Parallel No No PDAM

Practical:

Semi-disk-based Out-of-core
TDD TRLS. B2ST WF ERa PCF
(’04) (’07) (’09) (’09) (’11) (’13)

Work w. c. O(N2) O(N2) O(N2) O(N2) O(N2) O(pN lg N)

I/O eff. R. R. R.+S. R.+S. R.+S. R.+S.

Unbnd. Σ No No No No No No

Parallel No No No Yes Yes Yes

1Bedathur and Haritsa (2004)

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Suffix tree construction algorithms

Theoretical:

W (’73), McC (’78) U (’95) F-C et al. (’00)

Work w. c. O(N) O(N) O(N lg N)

Online No Yes Yes1

I/O efficiency String String Result+String

Unbounded Σ No No Yes

Parallel No No PDAM

Practical:

Semi-disk-based Out-of-core
TDD TRLS. B2ST WF ERa PCF
(’04) (’07) (’09) (’09) (’11) (’13)

Work w. c. O(N2) O(N2) O(N2) O(N2) O(N2) O(pN lg N)

I/O eff. R. R. R.+S. R.+S. R.+S. R.+S.

Unbnd. Σ No No No No No No

Parallel No No No Yes Yes Yes
1Bedathur and Haritsa (2004)

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Suffix tree construction algorithms

Theoretical:

W (’73), McC (’78) U (’95) F-C et al. (’00)

Work w. c. O(N) O(N) O(N lg N)

Online No Yes Yes1

I/O efficiency String String Result+String

Unbounded Σ No No Yes

Parallel No No PDAM

Practical:

Semi-disk-based Out-of-core
TDD TRLS. B2ST WF ERa PCF
(’04) (’07) (’09) (’09) (’11) (’13)

Work w. c. O(N2) O(N2) O(N2) O(N2) O(N2) O(pN lg N)

I/O eff. R. R. R.+S. R.+S. R.+S. R.+S.

Unbnd. Σ No No No No No No

Parallel No No No Yes Yes Yes
1Bedathur and Haritsa (2004)

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Suffix tree construction lower bounds

Sequential:

bounded Σ unbounded Σ

Time Ω(Sort(N)) Ω(Sort(N))

I/Os2 Ω(Sort(N)) Ω(Sort(N))

Space3 Ω(N lg σ) bits Ω(N lg σ) bits

Parallel on p processing units:
bounded Σ unbounded Σ

Parallel time Ω
(
N
p

)
Ω
(
N
p log N

)
Parallel I/Os4 Ω

(
N
pB

)
Ω
(

N
pB logM

B

N
B

)
Space3 Ω(N lg σ) bits Ω(N lg σ) bits

2EM model
3Uncompressed index in word RAM
4PEM model

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Suffix tree construction lower bounds

Sequential:

bounded Σ unbounded Σ

Time Ω(Sort(N)) Ω(Sort(N))

I/Os2 Ω(Sort(N)) Ω(Sort(N))

Space3 Ω(N lg σ) bits Ω(N lg σ) bits

Parallel on p processing units:
bounded Σ unbounded Σ

Parallel time Ω(Sortp(N)) Ω(Sortp(N))

Parallel I/Os4 Ω(Sortp(N)) Ω(Sortp(N))

Space3 Ω(N lg σ) bits Ω(N lg σ) bits

2EM model
3Uncompressed index in word RAM
4PEM model

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Suffix tree construction lower bounds

Sequential:

bounded Σ unbounded Σ

Time Ω(N) Ω(N log N)

I/Os2 Ω
(
N
B

)
Ω
(
N
B logM

B

N
B

)
Space3 Ω(N lg σ) bits Ω(N lg σ) bits

Parallel on p processing units:
bounded Σ unbounded Σ

Parallel time Ω
(
N
p

)
Ω
(
N
p log N

)
Parallel I/Os4 Ω

(
N
pB

)
Ω
(

N
pB logM

B

N
B

)
Space3 Ω(N lg σ) bits Ω(N lg σ) bits

2EM model
3Uncompressed index in word RAM
4PEM model

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Suffix tree construction lower bounds

Sequential:

bounded Σ unbounded Σ

Time Ω(N) Ω(N log N)

I/Os2 Ω
(
N
B

)
Ω
(
N
B logM

B

N
B

)
Space3 Ω(N lg σ) bits Ω(N lg σ) bits

Parallel on p processing units:
bounded Σ unbounded Σ

Parallel time Ω
(
N
p

)
Ω
(
N
p log N

)
Parallel I/Os4 Ω

(
N
pB

)
Ω
(

N
pB logM

B

N
B

)
Space3 Ω(N lg σ) bits Ω(N lg σ) bits

2EM model
3Uncompressed index in word RAM
4PEM model

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Theory and Practice

Substantial gap between the theoretical and practical results.

Practitioners (often) do not use theoretically the best results.

Perhaps we should look at practical solutions more carefully.

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Theory and Practice

Substantial gap between the theoretical and practical results.

Practitioners (often) do not use theoretically the best results.

Perhaps we should look at practical solutions more carefully.

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Theory and Practice

Substantial gap between the theoretical and practical results.

Practitioners (often) do not use theoretically the best results.

Perhaps we should look at practical solutions more carefully.

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

ERa — Elastic Range (Mansour et al. (2011))

Currently the fastest practical, parallel suffix tree construction
algorithm.

Time complexity: O(N2) w.c. – for (extremely) skewed text!

Yet, it’s fast in practice: Constructs and stores the human
genome’s suffix tree in 20 minutes on 16-core desktop PC
with HDD or 13 minutes with SSD!

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

ERa — Elastic Range (Mansour et al. (2011))

Currently the fastest practical, parallel suffix tree construction
algorithm.

Time complexity: O(N2) w.c. – for (extremely) skewed text!

Yet, it’s fast in practice: Constructs and stores the human
genome’s suffix tree in 20 minutes on 16-core desktop PC
with HDD or 13 minutes with SSD!

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

ERa — Elastic Range (Mansour et al. (2011))

Currently the fastest practical, parallel suffix tree construction
algorithm.

Time complexity: O(N2) w.c. – for (extremely) skewed text!

Yet, it’s fast in practice: Constructs and stores the human
genome’s suffix tree in 20 minutes on 16-core desktop PC
with HDD or 13 minutes with SSD!

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

ERa

ERa constructs the suffix tree in two steps:

1 The vertical partitioning step determines 1) the suffix
subtrees just fitting into M and 2) constructs the suffix tree
top.

2 The horizontal partitioning step builds the actual suffix
subtrees.

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

ERa

ERa constructs the suffix tree in two steps:
1 The vertical partitioning step determines 1) the suffix

subtrees just fitting into M and 2) constructs the suffix tree
top.

2 The horizontal partitioning step builds the actual suffix
subtrees.

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

ERa

ERa constructs the suffix tree in two steps:
1 The vertical partitioning step determines 1) the suffix

subtrees just fitting into M and 2) constructs the suffix tree
top.

2 The horizontal partitioning step builds the actual suffix
subtrees.

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

ERa

Algorithm 1: ERa

Input: String S , Alphabet Σ, Processors P, Private cache size M
Output: Suffix tree T

1 Ttop,G ← VerticalPartitioning(S ,Σ,M)
2 T ← Ttop
3 while |G | > 0 do
4 for p ∈ P do in parallel
5 if |G | > 0 then
6 π ← G .pop()
7 Tπ ← HorizontalPartitioning(S ,Σ, π)
8 Link(T , Tπ)

9 end

10 end

11 end
12 return T

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Vertical partitioning

Define S-prefix π as the prefix of the suffix in the text;
fπ = #of suffixes starting with π; and Tπ is a subtree with a root

corresponding π.

Idea: Approximate the size of Tπ as cfπ for some constant c and
expand the π so much, that cfπ ≤ M.

1 Scan the text and obtain the characters frequency fπ : π ∈ Σ
(counted all S-prefixes of length 1)

2 For each π : cfπ > M, π′ = πΣ and count fπ′ .
3 Repeat step two for S-prefixes of length 3, 4, ..., until all Tπ

just fits into the memory M.

Extra : To optimally fill the main memory, combine the S-prefixes
into virtual groups G , fitting into the main memory as tight as
possible (use First-Fit Decreasing heuristic for bin packing
problem)

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Vertical partitioning

Define S-prefix π as the prefix of the suffix in the text;
fπ = #of suffixes starting with π; and Tπ is a subtree with a root

corresponding π.

Idea: Approximate the size of Tπ as cfπ for some constant c and
expand the π so much, that cfπ ≤ M.

1 Scan the text and obtain the characters frequency fπ : π ∈ Σ
(counted all S-prefixes of length 1)

2 For each π : cfπ > M, π′ = πΣ and count fπ′ .
3 Repeat step two for S-prefixes of length 3, 4, ..., until all Tπ

just fits into the memory M.

Extra : To optimally fill the main memory, combine the S-prefixes
into virtual groups G , fitting into the main memory as tight as
possible (use First-Fit Decreasing heuristic for bin packing
problem)

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Vertical partitioning

Define S-prefix π as the prefix of the suffix in the text;
fπ = #of suffixes starting with π; and Tπ is a subtree with a root

corresponding π.

Idea: Approximate the size of Tπ as cfπ for some constant c and
expand the π so much, that cfπ ≤ M.

1 Scan the text and obtain the characters frequency fπ : π ∈ Σ
(counted all S-prefixes of length 1)

2 For each π : cfπ > M, π′ = πΣ and count fπ′ .
3 Repeat step two for S-prefixes of length 3, 4, ..., until all Tπ

just fits into the memory M.

Extra : To optimally fill the main memory, combine the S-prefixes
into virtual groups G , fitting into the main memory as tight as
possible (use First-Fit Decreasing heuristic for bin packing
problem)

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Vertical partitioning

Define S-prefix π as the prefix of the suffix in the text;
fπ = #of suffixes starting with π; and Tπ is a subtree with a root

corresponding π.

Idea: Approximate the size of Tπ as cfπ for some constant c and
expand the π so much, that cfπ ≤ M.

1 Scan the text and obtain the characters frequency fπ : π ∈ Σ
(counted all S-prefixes of length 1)

2 For each π : cfπ > M, π′ = πΣ and count fπ′ .

3 Repeat step two for S-prefixes of length 3, 4, ..., until all Tπ
just fits into the memory M.

Extra : To optimally fill the main memory, combine the S-prefixes
into virtual groups G , fitting into the main memory as tight as
possible (use First-Fit Decreasing heuristic for bin packing
problem)

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Vertical partitioning

Define S-prefix π as the prefix of the suffix in the text;
fπ = #of suffixes starting with π; and Tπ is a subtree with a root

corresponding π.

Idea: Approximate the size of Tπ as cfπ for some constant c and
expand the π so much, that cfπ ≤ M.

1 Scan the text and obtain the characters frequency fπ : π ∈ Σ
(counted all S-prefixes of length 1)

2 For each π : cfπ > M, π′ = πΣ and count fπ′ .
3 Repeat step two for S-prefixes of length 3, 4, ..., until all Tπ

just fits into the memory M.

Extra : To optimally fill the main memory, combine the S-prefixes
into virtual groups G , fitting into the main memory as tight as
possible (use First-Fit Decreasing heuristic for bin packing
problem)

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Vertical partitioning

Define S-prefix π as the prefix of the suffix in the text;
fπ = #of suffixes starting with π; and Tπ is a subtree with a root

corresponding π.

Idea: Approximate the size of Tπ as cfπ for some constant c and
expand the π so much, that cfπ ≤ M.

1 Scan the text and obtain the characters frequency fπ : π ∈ Σ
(counted all S-prefixes of length 1)

2 For each π : cfπ > M, π′ = πΣ and count fπ′ .
3 Repeat step two for S-prefixes of length 3, 4, ..., until all Tπ

just fits into the memory M.

Extra : To optimally fill the main memory, combine the S-prefixes
into virtual groups G , fitting into the main memory as tight as
possible (use First-Fit Decreasing heuristic for bin packing
problem)

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Vertical partitioning — Example

π = ACC , fACC = 12

TAACCCTA
ACCCTAAC
CCTAACCC
TAACCCTA
ACCCTAAC
CCTAACCC
TAACCCTA
ACCCTAAC
CCTAACCC
TAACCCTA
ACCCTAAC
CCTAACCC
TAAC

101:0

$

2:1

A

1:4

TAAC

4:1

C

3:2

AC

4:1

C

101:0

$

5:6

CCTAAC

$ CCTAAC

101:0

$

5:6

CCTAAC

$ CCTAAC

101:0

$

5:6

CCTAAC

101:0

$

11:6

CCTAAC

$ CCTAAC

101:0

$

7:4

TAAC

5:1

C

101:0

$

11:6

CCTAAC

$ CCTAAC

7:4

TAAC

6:5

CTAAC

$ CCTAAC $ CCTAAC

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Horizontal partitioning

For a prefix π (virtual group G) construct the suffix subtree:

1 Locate and store all n = fπ positions of π – we will sort n
strings in-memory; i.e. all strings are ambigous.

2 Optimal prefix length range of chars following π r = ρM
n –

Elastic Range.

3 Read the next r characters for each string.

4 Sort strings in-memory and record branching information
(=LCP) and the original position (=SA).

5 Let n be the number of strings that are still ambigous; go to
step 2 until n = 0 (as r increases n decreases).

6 Construct suffix subtree in DF manner using SA and LCP.

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Horizontal partitioning

For a prefix π (virtual group G) construct the suffix subtree:

1 Locate and store all n = fπ positions of π – we will sort n
strings in-memory; i.e. all strings are ambigous.

2 Optimal prefix length range of chars following π r = ρM
n –

Elastic Range.

3 Read the next r characters for each string.

4 Sort strings in-memory and record branching information
(=LCP) and the original position (=SA).

5 Let n be the number of strings that are still ambigous; go to
step 2 until n = 0 (as r increases n decreases).

6 Construct suffix subtree in DF manner using SA and LCP.

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Horizontal partitioning

For a prefix π (virtual group G) construct the suffix subtree:

1 Locate and store all n = fπ positions of π – we will sort n
strings in-memory; i.e. all strings are ambigous.

2 Optimal prefix length range of chars following π r = ρM
n –

Elastic Range.

3 Read the next r characters for each string.

4 Sort strings in-memory and record branching information
(=LCP) and the original position (=SA).

5 Let n be the number of strings that are still ambigous; go to
step 2 until n = 0 (as r increases n decreases).

6 Construct suffix subtree in DF manner using SA and LCP.

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Horizontal partitioning

For a prefix π (virtual group G) construct the suffix subtree:

1 Locate and store all n = fπ positions of π – we will sort n
strings in-memory; i.e. all strings are ambigous.

2 Optimal prefix length range of chars following π r = ρM
n –

Elastic Range.

3 Read the next r characters for each string.

4 Sort strings in-memory and record branching information
(=LCP) and the original position (=SA).

5 Let n be the number of strings that are still ambigous; go to
step 2 until n = 0 (as r increases n decreases).

6 Construct suffix subtree in DF manner using SA and LCP.

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Horizontal partitioning

For a prefix π (virtual group G) construct the suffix subtree:

1 Locate and store all n = fπ positions of π – we will sort n
strings in-memory; i.e. all strings are ambigous.

2 Optimal prefix length range of chars following π r = ρM
n –

Elastic Range.

3 Read the next r characters for each string.

4 Sort strings in-memory and record branching information
(=LCP) and the original position (=SA).

5 Let n be the number of strings that are still ambigous; go to
step 2 until n = 0 (as r increases n decreases).

6 Construct suffix subtree in DF manner using SA and LCP.

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Horizontal partitioning

For a prefix π (virtual group G) construct the suffix subtree:

1 Locate and store all n = fπ positions of π – we will sort n
strings in-memory; i.e. all strings are ambigous.

2 Optimal prefix length range of chars following π r = ρM
n –

Elastic Range.

3 Read the next r characters for each string.

4 Sort strings in-memory and record branching information
(=LCP) and the original position (=SA).

5 Let n be the number of strings that are still ambigous; go to
step 2 until n = 0 (as r increases n decreases).

6 Construct suffix subtree in DF manner using SA and LCP.

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Horizontal partitioning

For a prefix π (virtual group G) construct the suffix subtree:

1 Locate and store all n = fπ positions of π – we will sort n
strings in-memory; i.e. all strings are ambigous.

2 Optimal prefix length range of chars following π r = ρM
n –

Elastic Range.

3 Read the next r characters for each string.

4 Sort strings in-memory and record branching information
(=LCP) and the original position (=SA).

5 Let n be the number of strings that are still ambigous; go to
step 2 until n = 0 (as r increases n decreases).

6 Construct suffix subtree in DF manner using SA and LCP.

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Model of computation

Parallel External Memory model (PEM):5

Shared memory model,

2-level memory hierarchy:

p processors, each with
private cache of size M
bytes.
parallel memory transfers
in blocks of size B bytes.

Performance metrics:

parallel time,
parallel block transfers
(cache complexity).

Concurrent reads assumed.

B

Memory
(n)

CPU1

Caches
(M)
B

blocksM
B

CPU2

CPUp

5Arge, Goodrich, Nelson, Sitchinava 2008

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Assumptions and Definitions

Alphabet Σ of size σ; the number of processors p; the size of
block B; the size of memory M; and the length of input string
N.

The worst-case the input text is skewed: T = AAA...

Vertical partitioning expands S-prefixes by one character at
the time.

Requires N scans, that equals N2

2 comparisons.

Cache complexity O(N
2

B).

Our assumption:

Input text is random (viable for a single genome, proteins).

At any place the probability of each character to occur is 1
σ .

The suffix tree build from a random string is shallowest
(Szpankowski 1993).

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Assumptions and Definitions

Alphabet Σ of size σ; the number of processors p; the size of
block B; the size of memory M; and the length of input string
N.

The worst-case the input text is skewed: T = AAA...

Vertical partitioning expands S-prefixes by one character at
the time.

Requires N scans, that equals N2

2 comparisons.

Cache complexity O(N
2

B).

Our assumption:

Input text is random (viable for a single genome, proteins).

At any place the probability of each character to occur is 1
σ .

The suffix tree build from a random string is shallowest
(Szpankowski 1993).

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Assumptions and Definitions

Alphabet Σ of size σ; the number of processors p; the size of
block B; the size of memory M; and the length of input string
N.

The worst-case the input text is skewed: T = AAA...

Vertical partitioning expands S-prefixes by one character at
the time.

Requires N scans, that equals N2

2 comparisons.

Cache complexity O(N
2

B).

Our assumption:

Input text is random (viable for a single genome, proteins).

At any place the probability of each character to occur is 1
σ .

The suffix tree build from a random string is shallowest
(Szpankowski 1993).

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Analysis: Vertical partitioning

Assume M <
√

N.

Extending π by one from 1 till logσ
N
M and hence this many

scans of the text.

Sorting P = N/M prefixes.

Packing prefixes into virtual groups.

Consequently the number of I/Os

O

(
logσ

N

M
·
(

N

B
+ M2

)
+

N

M · B
logM

B

N

M · B

)

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Analysis: Vertical partitioning

Assume M <
√

N.

Extending π by one from 1 till logσ
N
M and hence this many

scans of the text.

Sorting P = N/M prefixes.

Packing prefixes into virtual groups.

Consequently the number of I/Os

O

(
logσ

N

M
·
(

N

B
+ M2

)
+

N

M · B
logM

B

N

M · B

)

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Analysis: Horizontal partitioning

For building of P subtrees by p processors, where each subtree:

Designed that data structure fits into memory.

Consequently the number of I/Os

O

(
N

B
· logσ

N

M

)

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Analysis: Horizontal partitioning

For building of P subtrees by p processors, where each subtree:

Designed that data structure fits into memory.

Consequently the number of I/Os

O

(
N

B
· logσ

N

M

)

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Evaluation: environment

Computer and environment:

2× 16-core AMD Opteron 6272 @2,100 MHz

128 GiB RAM

Seagate Baracuda 250 GB, 7,200 RPM, 32 MiB cache, SATA

Ubuntu server 12.04, Linux kernel 3.11.0

ext4 file system, deadline I/O scheduler

MPI programming

ERa parameters:

Memory size per core: 2 GiB

Input text: Human genome HG18.txt, 2.8 Gbp

ERa output:

Total suffix tree size: 77.3 GB stored in 187 files

Ttop size: 10.2 KB

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Results – 1

The time increases as we increase the number of cores.

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Results – 2

So what is the machine doing?

init Initialization including broadcasting to MPI clients.

cnt*, cnt1 Vertical partitioning: counting the frequency and
locating the S-prefixes in the input text.

filbuf Horizontal partitioning: reading the input text.

sort Horizontal partitioning: in-memory string sorting.

write Horizontal partitioning: writing the final result to
disk.

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Results – 2

So what is the machine doing?

init Initialization including broadcasting to MPI clients.

cnt*, cnt1 Vertical partitioning: counting the frequency and
locating the S-prefixes in the input text.

filbuf Horizontal partitioning: reading the input text.

sort Horizontal partitioning: in-memory string sorting.

write Horizontal partitioning: writing the final result to
disk.

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Results – 2 contd.

0 1000 2000 3000 4000 5000 6000
0

5

10

15

20

25

30
p = 1, t=5972.0s, s=p00

init=0s
cnt1=62s
cnt*=2284s
filbuf=709s
sort=1516s
write=1257s

0 500 1000 1500 2000 2500 3000 3500
0

5

10

15

20

25

30

35
p = 2, t=3463.0s, s=p00

init=201s
cnt1=63s
cnt*=2346s
filbuf=828s
sort=1662s
write=1360s

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

30

35

40
p = 3, t=2507.0s, s=p00

init=408s
cnt1=64s
cnt*=2367s
filbuf=841s
sort=1754s
write=1545s

0 500 1000 1500 2000 2500
0

5

10

15

20

25

30

35

40
p = 4, t=2033.0s, s=p00

init=615s
cnt1=64s
cnt*=2371s
filbuf=843s
sort=1721s
write=1952s

0 200 400 600 80010001200140016001800
0

10

20

30

40

50
p = 6, t=1678.0s, s=p00

init=1072s
cnt1=65s
cnt*=2454s
filbuf=886s
sort=1835s
write=2868s

0 200 400 600 800 1000 1200 1400
0

10

20

30

40

50

60
p = 8, t=1398.0s, s=p00

init=1590s
cnt1=65s
cnt*=2477s
filbuf=916s
sort=1793s
write=3705s

0 200 400 600 800 1000 1200 1400
0

10

20

30

40

50

60

70

80
p = 12, t=1303.0s, s=p00

init=2593s
cnt1=73s
cnt*=2746s
filbuf=962s
sort=2049s
write=6375s

0 200 400 600 800 1000 1200 1400
0

20

40

60

80

100
p = 16, t=1243.0s, s=p00

init=3516s
cnt1=76s
cnt*=2813s
filbuf=1002s
sort=2080s
write=8645s

0 200 400 600 800 1000 1200 1400
0

20

40

60

80

100

120

140
p = 20, t=1316.0s, s=p00

init=4669s
cnt1=77s
cnt*=2876s
filbuf=1043s
sort=2173s
write=12155s

0 200 400 600 800 1000 1200 1400
0

20

40

60

80

100

120

140

160
p = 24, t=1255.0s, s=p00

init=5643s
cnt1=88s
cnt*=3045s
filbuf=1217s
sort=2421s
write=15203s

0 200 400 600 800 1000 1200 1400
0

50

100

150

200
p = 28, t=1295.0s, s=p00

init=6906s
cnt1=98s
cnt*=3151s
filbuf=1425s
sort=2607s
write=17368s

0 200 400 600 800 1000 1200 1400
0

50

100

150

200

250
p = 32, t=1306.0s, s=p00

init=8283s
cnt1=98s
cnt*=3232s
filbuf=1617s
sort=2821s
write=20007s

parallel10_devnullprobability CPU times p00

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Hypotheis 1

Observation 1: The majority of time is spent writing the final
result to the disk.

Hypothesis 1: Problem is the disk performance, so replace HDD
with SSD.

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Hypotheis 1

Observation 1: The majority of time is spent writing the final
result to the disk.

Hypothesis 1: Problem is the disk performance, so replace HDD
with SSD.

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Results – 3

0 1000 2000 3000 4000 5000 6000
0

5

10

15

20

25

30
p = 1, t=5657.0s, s=p00

init=0s
cnt1=62s
cnt*=2296s
filbuf=735s
sort=1689s
write=731s

0 500 1000 1500 2000 2500 3000 3500
0

5

10

15

20

25

30
p = 2, t=3068.0s, s=p00

init=172s
cnt1=62s
cnt*=2309s
filbuf=787s
sort=1715s
write=745s

0 500 1000 1500 2000 2500
0

5

10

15

20

25

30

35
p = 3, t=2183.0s, s=p00

init=349s
cnt1=63s
cnt*=2337s
filbuf=819s
sort=1772s
write=809s

0 200 400 600 80010001200140016001800
0

5

10

15

20

25

30

35
p = 4, t=1700.0s, s=p00

init=525s
cnt1=64s
cnt*=2350s
filbuf=830s
sort=1735s
write=872s

0 200 400 600 800 1000 1200 1400
0

5

10

15

20

25

30

35

40
p = 6, t=1304.0s, s=p00

init=934s
cnt1=66s
cnt*=2464s
filbuf=875s
sort=1855s
write=1051s

0 200 400 600 800 1000 1200
0

5

10

15

20

25

30

35

40

45
p = 8, t=1049.0s, s=p00

init=1305s
cnt1=68s
cnt*=2476s
filbuf=904s
sort=1874s
write=1169s

0 100 200 300 400 500 600 700 800 900
0

10

20

30

40

50

60
p = 12, t=898.0s, s=p00

init=2327s
cnt1=77s
cnt*=2859s
filbuf=992s
sort=2115s
write=1554s

0 100 200 300 400 500 600 700 800 900
0

10

20

30

40

50

60

70
p = 16, t=804.0s, s=p00

init=3187s
cnt1=79s
cnt*=2878s
filbuf=1079s
sort=2177s
write=2230s

0 100 200 300 400 500 600 700 800 900
0

10

20

30

40

50

60

70

80

90
p = 20, t=826.0s, s=p00

init=4179s
cnt1=81s
cnt*=2948s
filbuf=1083s
sort=2209s
write=3777s

0 100 200 300 400 500 600 700 800
0

20

40

60

80

100
p = 24, t=772.0s, s=p00

init=5194s
cnt1=87s
cnt*=3086s
filbuf=1221s
sort=2363s
write=4773s

0 100 200 300 400 500 600 700 800 900
0

20

40

60

80

100

120
p = 28, t=801.0s, s=p00

init=6405s
cnt1=93s
cnt*=3233s
filbuf=1412s
sort=2476s
write=5579s

0 100 200 300 400 500 600 700 800
0

20

40

60

80

100

120

140
p = 32, t=790.0s, s=p00

init=7492s
cnt1=96s
cnt*=3389s
filbuf=1712s
sort=2709s
write=6427s

parallel10_devnullprobability_ssd CPU times p00

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Hypotheis 2

Observation 2: The amount of time for writting decreased, but as
the number of cores grows, it is still substantial.

Hypothesis 2: There it is still a problem with a disk performance
and consequently further speed-up disk by writting to /dev/null.

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Hypotheis 2

Observation 2: The amount of time for writting decreased, but as
the number of cores grows, it is still substantial.

Hypothesis 2: There it is still a problem with a disk performance
and consequently further speed-up disk by writting to /dev/null.

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Results – 4

5 10 15 20 25 30 35
of proc.

0

1000

2000

3000

4000

5000

6000

7000

ti
m

e
 [

s]

probability = 0.0

5 10 15 20 25 30 35
of proc.

ti
m

e
 [

s]

probability = 0.1

5 10 15 20 25 30 35
of proc.

ti
m

e
 [

s]

probability = 0.2

5 10 15 20 25 30 35
of proc.

ti
m

e
 [

s]

probability = 0.3

5 10 15 20 25 30 35
of proc.

0

1000

2000

3000

4000

5000

6000

7000

ti
m

e
 [

s]

probability = 0.4

5 10 15 20 25 30 35
of proc.

ti
m

e
 [

s]

probability = 0.5

5 10 15 20 25 30 35
of proc.

ti
m

e
 [

s]

probability = 0.6

5 10 15 20 25 30 35
of proc.

ti
m

e
 [

s]

probability = 0.7

5 10 15 20 25 30 35
of proc.

0

1000

2000

3000

4000

5000

6000

7000

ti
m

e
 [

s]

probability = 0.8

5 10 15 20 25 30 35
of proc.

ti
m

e
 [

s]

probability = 0.9

5 10 15 20 25 30 35
of proc.

ti
m

e
 [

s]

probability = 1.0

0.0 0.2 0.4 0.6 0.8 1.0

times per # of proc., /dev/null prob. wise

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Hypotheis 3

Observation 3: Things are getting better, but there is still an
increase in time when the number of cores is increased.

Hypothesis 3: ??

Check in more detail what the processes are doing.

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Hypotheis 3

Observation 3: Things are getting better, but there is still an
increase in time when the number of cores is increased.

Hypothesis 3: ??

Check in more detail what the processes are doing.

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Results – 5 (p = 16)

0 200 400 600 800 1000 1200

0

20

40

60

80

100
p = 16, t=1243.0

init=3516s
cnt1=76s
cnt*=2813s
filbuf=1002s
sort=2080s
write=8645s

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

parallel10_devnullprobability CPU times per CPU, p00

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Results – 5 (p = 32)

0 200 400 600 800 1000 1200

0

50

100

150

200

250
p = 32, t=1306.0

init=8283s
cnt1=98s
cnt*=3232s
filbuf=1617s
sort=2821s
write=20007s

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

parallel10_devnullprobability CPU times per CPU, p00

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Conclusion

There is a substantial gap between theoretical results and
practically used solutions.

ERa despite being practically the fastest algorithm is not
theoretically tight – even for random input strings with
uniform substring distribution.

Open challenges:

Analyse ERa bottlenecks for further improvements (see if they
match the critical terms in time and I/O complexities).

Shall we choose some other basic technique for the
implementation of a practical algorithm?

Design a theoretically tight yet practically competitive parallel
algorithm for suffix tree construction.

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Conclusion

There is a substantial gap between theoretical results and
practically used solutions.

ERa despite being practically the fastest algorithm is not
theoretically tight – even for random input strings with
uniform substring distribution.

Open challenges:

Analyse ERa bottlenecks for further improvements (see if they
match the critical terms in time and I/O complexities).

Shall we choose some other basic technique for the
implementation of a practical algorithm?

Design a theoretically tight yet practically competitive parallel
algorithm for suffix tree construction.

Introduction ERa Analysis of ERa Empirical evaluation Conclusion

Thanx for your attention!

	Introduction
	Text indexing problem
	Suffix tree construction times
	Suffix tree construction lower bounds
	Theory and Practice

	ERa
	Overview
	Vertical partitioning
	Horizontal partitioning

	Analysis of ERa
	Model of computation
	Assumptions and Definitions
	Analysis

	Empirical evaluation
	Environment
	Results

	Conclusion

