
A Faster Algorithm for Calculating the Sample Entropy

A faster algorithm for calculating the sample entropy of physiological signals

Gašper Fele-Žorž
Faculty of Computer and Information Science

Tržaška cesta 25
Ljubljana, Slovenia
polz@fri.uni-lj.si

ABSTRACT
In this paper, we present an overview of different methods
for calculating a measure of signal complexity called sample
entropy. We then present a way to improve the most widely
used algorithm by using a skip-list.

Categories and Subject Descriptors
I.5.4 [Applications]: Signal processing

Keywords
sample entropy, skip list

1. INTRODUCTION
In nature, many processes are quite unpredictable. The level
of unpredictability can sometimes tell us a lot about the sys-
tem under observation. Research has shown, for example,
that the heart-beats of people with some heart problems
tend to be more regular than the heart-beats of healthy in-
dividuals.

Unfortunately, the most widely used method currently for
calculating the sample entropy of signals is too slow to allow
anything but offline processing of signals.

2. METHODS
Sample entropy is a measure of predictability of a time series.
Apart from the time series itself, it also depends on two
parameters, template length m and tolerance r. The less
predictable time series, the higher it’s sample entropy will
be.

Suppose we have a finite time series y(0, . . . , N−1) of length
N . Given a constant m;m << N , y(t) can be divided into
N −m+ 1 pattern templates xt(0, . . .m− 1) of length m so
that xt(i) = y(t + i) for each i = 0 . . .m − 1 and for each
t = 0 . . . N −m.

Given a positive tolerance r, we can consider xt2 to match
xt1 if |xt1(i)− xt2(i)| ≤ r for each i = 0 . . .m− 1.

The predictability of a time series can then be estimated by
counting the number of matching templates for each tem-
plate within a time series. An example time series with

Figure 1: A time series with a template of length 3
at i = 5 and it’s match within r = 0.2

a template m=3 samples long and it’s matching template
within r = 0.2 are shown in Figure 1.

Sample entropy depends on the probability that if for some
template, a matching template of length m within a margin
of r is found within a time series, then a matching template
of length m + 1 within a margin of r is also found. If no
matching templates are found in the whole signal, sample
entropy depends only on the length of the time series N and
the template length m+1. The templates of length m at the
end of a time series (y(N−m) . . . y(N−1)) are a special case
since there can be no matching templates of length m + 1
corresponding to these matches.

More precisely, if Am is the number of matches for all tem-
plates of length m within a time series y(t) and Bm is the
number of matches for all templates of length m except the
ones at the end of the time series y(t), sample entropy is

sampEn(y, r, M):

N=len(y);

lastruns=zeros(N);

runs=zeros(N);

A=zeros(M);

B=zeros(M);

e=zeros(M);

for i in 0...N-1:

y1=y[i];

for j in i+1...N-1:

if |y[j]-y1| < r:

runs[j]=lastruns[j-1]+1

for m in 0...min(M, run[j])):

A[m]+=1

if j<N-1:

B[m] += 1

else:

run[j]=0;

(runs, lastruns) = (lastruns, runs)

B = concatenate([N*(N-1)/2], B[:-1])

p=A/B;

return -log(p)

Figure 2: The most widely used algorithm for cal-
culating the sample entropy of a signal

defined [3] as:

sampEnm,r(y) =

{
−log(Am

B(m−1)
) : Am 6= 0 ∧Bm−1 6= 0

−log((N−m)
(N−m−1)

) : Am = 0 ∨Bm−1 = 0

(1)

For m = 0, Bm is set to N·(N−1)
2

.

2.1 Calculating the sample entropy in O(N2)

time
The obvious näıve algorithm for calculating sample entropy
is to count the number of matches for each template of length
m. Assuming that m is much smaller than N , the time
complexity of this algorithm is

O

(
N2

2
· (1− (1− pr)m)

)
where pr represents the probability of two samples, y(i) and
y(j), being within r of each other. For typical physiological
time series, r will be chosen so that pr is usually small.

The algorithm above can typically be improved by a factor

of close to 1−(1−pr)
m

pr
by storing the runs of matches in an

array of length N . The improved algorithm also calculates
the sample entropy for every m ≤M at no extra cost:

The time complexity of this algorithm is O(N ·N
2
·(1+pr ·m))

An example calculation of sample entropy is shown in Fig-
ure 3. The time series used, y, is the same as in Figure 1.
The table runs is shown for each iteration through y. This
seems to be the standard algorithm most researchers use.
An implementation in C is available on Physionet [1].

2.2 Calculating the sample entropy using K-D
trees

Recently, an improved method has been presented for cal-
culating sample entropy by [2]. The method works by using
each template of length m starting at index i within a sig-
nal y as a point pi in m-dimensional space. N −m points
are constructed from a signal of length N . All points are
inserted into a K-D tree of dimension d = m. The number
of matches within r for each point are then counted.

Since range counting in K-D trees can be done in O(N1−(1/d))
time and a K-D tree can be constructed in O(NlogN) time,
this algorithm is noticeably faster than the most commonly
used algorithm.

This algorithm has been improved further by [4]. Instead
of inserting all points into a single K-D tree and then per-
forming queries against the whole tree, the number of points
in the tree during each query can be drastically reduced by
first removing all points from the tree and sorting the points
by the first dimension p(0).

The sorted points are then inserted back into the tree one
by one until pi(0) > min(p(0)) + 2r. Matches are then
counted for each point in order of p(0). When pi(0) reaches
min(p(0)) + r, the points with the lowest p(0) are removed
from the K-D tree and all the points with p(0) < pi(0) + r
are inserted.

This way, the K-D tree is kept small so the counting of
matches can be done faster.

Due to the curse of dimensionality, these methods should
perform poorly for large values of m. Since m is usually
low, this is unlikely to present a problem.

2.3 Calculating the sample entropy using a skip-
list

As depicted in Figure 3, typically, a small number of samples
in y are within r of each other. The standard algorithm for
calculating the sample entropy can be improved by skipping
over those parts of y where the begginings of patterns do
not match.

sampEn(y, r, M):

N = len(y)

lastrun = zeros(N) with history of length M;

run = zeros(N) with history of length M;

A = zeros(M)

B = zeros(M)

L = OrderedStructure

for i in 0...N-1:

L[y[i]] = i

for i in 0...N-1:

y1 = y[i];

runs.history.remove_oldest()

for j in run.history:

runs[j] = 0

sums = zeros(M)

for j in L[y1 - r]...L[y1 + r]:

runs[j] = lastruns[j-1]+1

runs.history.newest.add(j)

sums[min(M, runs[j])] += 1

m_sum = 0

Figure 3: An example of sample entropy calculation.

for m in M...0 step -1:

m_sum += sums[0]

A[m] += m_sum

if j<N-1:

B[m] += m_sum

(runs, lastruns) = (lastruns, runs)

B = concatenate([N*(N-1)/2], B[:-1])

p=A/B;

return -log(p)

The time complexity thus becomes O(N ·AL0 + N · (AL1 +
pr · (N/2 · AL2 + m))) where AL0 denotes the time to add
an element to L, AL1 denotes the time to access the first
sample y(j) which is greater than y(i)− r and AL2 denotes
the time to access each subsequent sample. The expected
number of matches for each y(i) is pr ∗N/2.

For the algorithm to offer an improvement, the data struc-
ture L would have to offer certain performance guarantees.
The value of the sample would serve as the key and it’s po-
sition in the original time-series would serve as the value. In
this data structure, the following operations would have to
be fast (O(log(N)) or better):

1. the storage of multiple instances with the same key
(AL0),

2. the retreival of the first instance whose key is above a
certain limit (AL1),

3. given an instance, the retreival of the next-higher in-
stance (AL2).

Preferably, the structure would also be simple to implement.

We decided to use a modified skip list. Normally, each
node in a skip list contains a single value. Unfortunately,
on modern computers, pointer lookups are relatively costly,

especially when they lead to pages which are not yet in the
processor’s cache.

We therefore decided to implement a ”fat skip list”. A fat
skip list is a skip list whose nodes contain sorted tables of
elements. The size of each node is chosen according to the
expected target microprocessor architecture during compile
time. Our implementation is written in C.

When using a skip list, the time complexity of adding an
element to L, AL0, is O(log(N)) and the expected time com-
plexity of searching for the first matching element, AL1, is
O(log(N)) in both cases with very high probability. The
time complexity of finding the next match, AL2, is O(1).

Our algorithm would perform poorly if the value of r were
high (i.e., pr would be high), which would mean that for
each starting sample in each pattern, there would be many
matches within the time series. For finite, semi-random
time, series and a small enough pr, we can assume that the
number of matching samples for each sample y(i), pr ·N/2
will be small. For a small enough r, this could be considered
as a constant, Cpr .

With these assumptions, the time complexity of our algo-
rithm becomes O(N · log(N) + N · (log(N) + Cpr + m)).

Unfortunately, if the signal is normalized prior to calculat-
ing sample entropy. The number of matching samples in
this case can no longer be considered as small and the time
complexity of our algorithm becomes O(N · log(N) + N ·
(log(N) + N · pr + m)). We expect our implementation to
be slower than the algorithms using K-D trees and range
counting.

3. RESULTS
We tested our algorithm on sections of two time series with
various parameter settings. The first was the test data pro-
vided with the sampEn program. The second was pink noise.

We used pink noise as an approximation of a physiological
signal [5]. We noted the running times of our algorithm
and of the more widely used implementation with respect
to the length of the signal subsection. Both our algorithm
and the most widely used implementation were compiled
using gcc 4.8.1 with the -O3 flag and run on a desktop com-
puter running Ubuntu with Linux version 3.2 on an Intel(R)
Core(TM) i5-3570K CPU @ 3.40GHz with 8G RAM.

3.1 Worst case
In the worst case, we normalized the signal and set the r pa-
rameter to 1.0 so that every pattern matched on each sample
in the time series. To make the most widely used algorithm
perform better, we set m to 2. Even in this case, our algo-
rithm was faster than the most widely used implementation.

Figure 4: Time needed to calculate the sample en-
tropy of the used signals (worst case). The most
widely used implementation is marked as “default”.

3.2 Best case
In the best case, the signal was not normalized, r was set
to 0.02 and m to 100. In this case, the most widely used
algorithm performed relatively poorly.

3.3 Typical case
Typically, sample entropy is calculated for physiological time
series. The signals were normalized, m was set to 5 and r
was set to 0.2 - the default settings for the most widely
used implementation. The improvement in runtime when
compared to the more widely used method was noticeable,
especially for longer time series lengths at a low value of r.

4. DISCUSSION
The main idea behind the improvement of the algorithm
used to calculate the sample entropy of a time series was to
only count those pattern matches where the first samples of
the patterns are within r of each other, skipping over the
rest. To do this efficiently, we only needed to use a data
structure which enabled us to search for an element greater
than some specified value faster than in O(N) time.

The first implementation of our algorithm used simple skip
lists. The penalty incurred by the constant dereferencing of

Figure 5: Time needed to calculate the sample en-
tropy of a signal (best, typical cases). The most
widely used implementation is marked as “default”

pointers turned out to be so great that our implementation
of the algorithm was slower than the more popular sampEn
on all but the longest time series. Using fat leaves, in the
worst case, the current implementation is faster than the
most widely used algorithm.

4.1 Further work
The algorithm presented in this article can easily be adapted
for the calculation of sample entropy of consecutive subsec-
tions of a time series, using a sliding window.

5. REFERENCES
[1] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M.

Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus,
G. B. Moody, C. K. Peng, and H. E. Stanley.
PhysioBank, PhysioToolkit, and PhysioNet:
Components of a new research resource for complex
physiologic signals. Circulation, 101(23):e215–e220,
June 13 2000. Circulation Electronic Pages:
http://circ.ahajournals.org/cgi/content/full/101/23/e215.

[2] Y. Jiang, D. Mao, and Y. Xu. A fast algorithm for
computing sample entropy, 2011.

[3] D. E. Lake, J. S. Richman, M. P. Griffin, and J. R.
Moorman. Sample entropy analysis of neonatal heart
rate variability. American Journal of Physiology,
283(3), 2002.

[4] Y.-H. Pan, Y.-H. Wang, S.-F. Liang, and K.-T. Lee.
Fast computation of sample entropy and approximate
entropy in biomedicine. Computer Methods and
Programs in Biomedicine, 104:382–396, 2011.

[5] P. Szendro, G. Vincz, and A. Szasz. Pink-noise
behaviour of biosystems. European Biophysics Journal,
30:227–231, July 2001.

