Theoretical aspects of ERa, the fastest practical suffix tree construction algorithm

Matevž Jekovec

University of Ljubljana
Faculty of Computer and Information Science

Oct 10, 2013
Text indexing problem

Problem statement

Given unstructured input text T consisting of n characters from alphabet Σ build an index such that for query pattern P we:

1. determine whether P occurs in T in time $O(|P|)$,
2. find all occurrences of P in T in time $O(|P| + \text{occ})$,
3. find the longest common prefix (LCP) of P and any suffix of T in time $O(\text{LCP}(P, T))$.

Solution

Suffix tree and suffix array (SA) with LCP information are fundamental data structures for indexing unstructured text.
Text indexing problem

Problem statement

Given unstructured input text T consisting of n characters from alphabet Σ build an index such that for query pattern P we:

- determine whether P occurs in T in time $O(P)$,
- find all occurrences of P in T in time $O(P + \text{occ})$,
- find the longest common prefix (LCP) of P and any suffix of T in time $O(LCP(P, T))$.

Solution

Suffix tree and suffix array (SA) with LCP information are fundamental data structures for indexing unstructured text.
Text indexing problem

Problem statement
Given unstructured input text T consisting of n characters from alphabet Σ build an index such that for query pattern P we:

- determine whether P occurs in T in time $O(P)$,
- find all occurrences of P in T in time $O(P + occ)$,
- find the longest common prefix (LCP) of P and any suffix of T in time $O(LCP(P, T))$.

Solution
Suffix tree and *suffix array (SA)* with LCP information are fundamental data structures for indexing unstructured text.
Suffix tree construction algorithms

- **Theoretical:**

<table>
<thead>
<tr>
<th></th>
<th>W ('73), McC ('78)</th>
<th>U ('95)</th>
<th>F-C et al. ('00)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Θ(n)</td>
<td>Θ(n)</td>
<td>Θ(n lg</td>
</tr>
<tr>
<td>Online</td>
<td>No</td>
<td>Yes</td>
<td>Yes⁴</td>
</tr>
<tr>
<td>Cache-efficient</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Unbounded Σ</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

⁴Bedathur and Haritsa (2004)
Suffix tree construction algorithms

Theoretical:

<table>
<thead>
<tr>
<th></th>
<th>W ('73), McC ('78)</th>
<th>U ('95)</th>
<th>F-C et al. ('00)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n \lg</td>
</tr>
<tr>
<td>Online</td>
<td>No</td>
<td>Yes</td>
<td>Yes¹</td>
</tr>
<tr>
<td>Cache-efficient</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Unbounded Σ</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Practical:

<table>
<thead>
<tr>
<th></th>
<th>Semi-disk-based</th>
<th>Out-of-core</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>Cache-eff.</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>String acc.</td>
<td>Rnd.</td>
<td>Seq.</td>
</tr>
<tr>
<td>Parallel</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

¹Bedathur and Haritsa (2004)
Suffix tree construction algorithms

- **Theoretical:**

<table>
<thead>
<tr>
<th></th>
<th>W ('73), McC ('78)</th>
<th>U ('95)</th>
<th>F-C et al. ('00)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n \log</td>
</tr>
<tr>
<td>Online</td>
<td>No</td>
<td>Yes</td>
<td>Yes1</td>
</tr>
<tr>
<td>Cache-efficient</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Unbounded Σ</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- **Practical:**

<table>
<thead>
<tr>
<th></th>
<th>Semi-disk-based</th>
<th>Out-of-core</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TDD ('04)</td>
<td>B2ST ('09)</td>
</tr>
<tr>
<td></td>
<td>ST-Merge ('05)</td>
<td>WF ('09)</td>
</tr>
<tr>
<td>Time</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>Cache-eff.</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>String acc.</td>
<td>Rnd.</td>
<td>Seq.</td>
</tr>
<tr>
<td>Parallel</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

1Bedathur and Haritsa (2004)
Suffix tree construction algorithms

- **Theoretical:**

<table>
<thead>
<tr>
<th></th>
<th>W ('73), McC ('78)</th>
<th>U ('95)</th>
<th>F-C et al. ('00)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n \lg</td>
</tr>
<tr>
<td>Online</td>
<td>No</td>
<td>Yes</td>
<td>Yes1</td>
</tr>
<tr>
<td>Cache-efficient</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Unbounded Σ</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- **Practical:**

<table>
<thead>
<tr>
<th>Semi-disk-based</th>
<th>Out-of-core</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDD ('04)</td>
<td>ST-Merge ('05)</td>
</tr>
<tr>
<td>Time</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>Cache-eff.</td>
<td>Yes</td>
</tr>
<tr>
<td>Parallel</td>
<td>No</td>
</tr>
</tbody>
</table>

Huge gap between the theoretical and practical results!

1Bedathur and Haritsa (2004)
Suffix tree construction algorithms

Theoretical:

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time</th>
<th>Online</th>
<th>Cache-efficient</th>
<th>Unbounded Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>W ('73), McC ('78)</td>
<td>Θ(n)</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>U ('95)</td>
<td>Θ(n)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>F-C et al. ('00)</td>
<td>Θ(n lg</td>
<td>Σ</td>
<td>)</td>
<td>Yes(^1)</td>
</tr>
</tbody>
</table>

\(^1\)Bedathur and Haritsa (2004)

Practical:

<table>
<thead>
<tr>
<th>Semi-disk-based</th>
<th>Out-of-core</th>
<th>Time</th>
<th>Cache-eff.</th>
<th>String acc.</th>
<th>Parallel</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDD</td>
<td>ST-Merge</td>
<td>TRLS</td>
<td>B(^2)ST</td>
<td>WF ('09)</td>
<td>ERa ('11)</td>
</tr>
<tr>
<td>WF ('09)</td>
<td>O(n(^2))</td>
<td>Yes</td>
<td>Seq.</td>
<td>Seq.</td>
<td>Yes</td>
</tr>
<tr>
<td>O(n(^2))</td>
<td></td>
<td>Yes</td>
<td>Seq.</td>
<td>Seq.</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Motivation

Huge gap between the theoretical and practical results!

Analyse the fastest practical algorithm and compare it to the theoretical ones.
Suffix tree

T = ABRAKADABRA$
Parallel External Memory model (PEM)\(^2\)

- Shared-memory model describing well the modern multi-core architecture.
- Two-level memory hierarchy w/ fast&limited private caches on 1\(^{st}\) level and slow&unlimited main memory on the 2\(^{nd}\).
- Features:
 - \(P\) — # of processing elements
 - \(B\) — block size
 - \(M\) — cache (main memory) size

\(^2\)Arge, Goodrich, Nelson, Sitchinava (2008)
Parallel External Memory model (PEM)

- We assume CREW PEM.
- Data are read and stored on disk and not fitting into main memory:
 - Denote first level as the main memory and second level as the disk.
- Performance metrics:
 - parallel time,
 - parallel block transfers bw/ disk and main memory.
SUFFIX TREE CONSTRUCTION LOWER BOUNDS

Sequential:

<table>
<thead>
<tr>
<th></th>
<th>bounded Σ</th>
<th>unbounded Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>(\Omega(\text{Sort}(n)))</td>
<td>(\Omega(\text{Sort}(n)))</td>
</tr>
<tr>
<td>I/Os(^3)</td>
<td>(\Omega(\text{Sort}(n)))</td>
<td>(\Omega(\text{Sort}(n)))</td>
</tr>
<tr>
<td>Space(^4)</td>
<td>(\Omega(n \lg</td>
<td>\Sigma</td>
</tr>
</tbody>
</table>

\(^3\)EM model

\(^4\)Uncompressed index

\(^5\)PEM model
Suffix tree construction lower bounds

- **Sequential:**

<table>
<thead>
<tr>
<th></th>
<th>bounded Σ</th>
<th>unbounded Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>$\Omega(\text{Sort}(n))$</td>
<td>$\Omega(\text{Sort}(n))$</td>
</tr>
<tr>
<td>I/Os3</td>
<td>$\Omega(\text{Sort}(n))$</td>
<td>$\Omega(\text{Sort}(n))$</td>
</tr>
<tr>
<td>Space4</td>
<td>$\Omega(n \lg</td>
<td>\Sigma</td>
</tr>
</tbody>
</table>

- **Parallel on p processing units:**

<table>
<thead>
<tr>
<th></th>
<th>bounded Σ</th>
<th>unbounded Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel time</td>
<td>$\Omega(\text{Sort}_p(n))$</td>
<td>$\Omega(\text{Sort}_p(n))$</td>
</tr>
<tr>
<td>Parallel I/Os5</td>
<td>$\Omega(\text{Sort}_p(n))$</td>
<td>$\Omega(\text{Sort}_p(n))$</td>
</tr>
<tr>
<td>Space4</td>
<td>$\Omega(n \lg</td>
<td>\Sigma</td>
</tr>
</tbody>
</table>

3 EM model
4 Uncompressed index
5 PEM model
Suffix tree construction lower bounds

Sequential:

<table>
<thead>
<tr>
<th></th>
<th>bounded Σ</th>
<th>unbounded Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>$\Omega(n)$</td>
<td>$\Omega(n \log n)$</td>
</tr>
<tr>
<td>I/Os3</td>
<td>$\Omega\left(\frac{n}{B}\right)$</td>
<td>$\Omega\left(\frac{n}{B} \log \frac{M}{B} \frac{n}{M}\right)$</td>
</tr>
<tr>
<td>Space4</td>
<td>$\Omega(n \lg</td>
<td>\Sigma</td>
</tr>
</tbody>
</table>

Parallel on p processing units:

<table>
<thead>
<tr>
<th></th>
<th>bounded Σ</th>
<th>unbounded Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel time</td>
<td>$\Omega\left(\frac{n}{p}\right)$</td>
<td>$\Omega\left(\frac{n}{p} \log n\right)$</td>
</tr>
<tr>
<td>Parallel I/Os5</td>
<td>$\Omega\left(\frac{n}{pB}\right)$</td>
<td>$\Omega\left(\frac{n}{pB} \log \frac{M}{B} \frac{n}{B}\right)$</td>
</tr>
<tr>
<td>Space4</td>
<td>$\Omega(n \lg</td>
<td>\Sigma</td>
</tr>
</tbody>
</table>

3 EM model
4 Uncompressed index
5 PEM model
Suffix tree construction lower bounds

Sequential:

<table>
<thead>
<tr>
<th></th>
<th>bounded Σ</th>
<th>unbounded Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>$\Omega(n)$</td>
<td>$\Omega(n \log n)$</td>
</tr>
<tr>
<td>I/Os3</td>
<td>$\Omega \left(\frac{n}{B} \right)$</td>
<td>$\Omega \left(\frac{n}{B} \log \frac{M}{B} \right)$</td>
</tr>
<tr>
<td>Space4</td>
<td>$\Omega(n \lg</td>
<td>\Sigma</td>
</tr>
</tbody>
</table>

Parallel on p processing units:

<table>
<thead>
<tr>
<th></th>
<th>bounded Σ</th>
<th>unbounded Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel time</td>
<td>$\Omega \left(\frac{n}{p} \right)$</td>
<td>$\Omega \left(\frac{n}{p} \log n \right)$</td>
</tr>
<tr>
<td>Parallel I/Os5</td>
<td>$\Omega \left(\frac{n}{pB} \right)$</td>
<td>$\Omega \left(\frac{n}{pB} \log \frac{M}{B} \right)$</td>
</tr>
<tr>
<td>Space4</td>
<td>$\Omega(n \lg</td>
<td>\Sigma</td>
</tr>
</tbody>
</table>

3 EM model
4 Uncompressed index
5 PEM model
ERa - Elastic Range

- The fastest practical, parallel suffix tree construction algorithm to date.

6Heinz, Zobel, Williams (2002)
7Mansour, Allam, Skiadopoulos, Kalnis (2011)
ERa - Elastic Range7

- The fastest practical, parallel suffix tree construction algorithm to date.
- Time complexity: $O(n^2)$ w.c. — for extremely skewed text!

6Heinz, Zobel, Williams (2002)
7Mansour, Allam, Skiadopoulos, Kalnis (2011)
ERa - Elastic Range

- The fastest practical, parallel suffix tree construction algorithm to date.
- Time complexity: $O(n^2)$ w.c. — for extremely skewed text!
- Yet, it’s **fast** in practice: Constructs and stores the human genome’s suffix tree in 14 minutes on 16-core desktop PC w/ HDD storage!

6 Heinz, Zobel, Williams (2002)
7 Mansour, Allam, Skiadopoulos, Kalnis (2011)
ERa - Elastic Range

- The fastest practical, parallel suffix tree construction algorithm to date.
- Time complexity: $O(n^2)$ w.c. — for extremely skewed text!
- Yet, it’s fast in practice: Constructs and stores the human genome’s suffix tree in 14 minutes on 16-core desktop PC w/ HDD storage!
- Key idea:
 - DNA, music, proteins are almost random
 - Suppose random input text and PEM model of computation:
 - What is expected time complexity?
 - What is expected I/O complexity?

6Heinz, Zobel, Williams (2002)

7Mansour, Allam, Skiadopoulos, Kalnis (2011)
ERa steps

ERa constructs the suffix tree in two steps:

1. The **vertical partitioning** step determines the suffix subtrees just fitting into M.

2. The **horizontal partitioning** step builds the actual suffix subtrees.
Define **S-prefix** as the prefix of the suffix in the text.
Define **S-prefix** as the prefix of the suffix in the text. Intuition: The S-prefix frequency f_π is \# of leaves in the suffix subtree π. This determines the whole subtree size in w.c.!

8Yue (1991)
Define **S-prefix** as the prefix of the suffix in the text. Intuition: The S-prefix frequency f_π is # of leaves in the suffix subtree π. This determines the whole subtree size in w.c.!

Run sequentially:

1. Scan the text and count the characters frequency $f_\pi : \pi \in \Sigma$.
 - Note: We obtain S-prefixes of length 1.

Yue (1991)
Vertical partitioning

Define **S-prefix** as the prefix of the suffix in the text. Intuition: The S-prefix frequency f_π is the number of leaves in the suffix subtree π. This determines the whole subtree size in w.c.!

Run sequentially:

1. Scan the text and count the characters frequency $f_\pi : \pi \in \Sigma$.
 - Note: We obtain S-prefixes of length 1.

2. For each $\pi : f_\pi > M$, expand character with its right neighbour and count the frequency of obtained S-prefixes (now length 2).

8 Yue (1991)
Define **S-prefix** as the prefix of the suffix in the text.

Intuition: The S-prefix frequency f_π is the number of leaves in the suffix subtree π. This determines the whole subtree size in w.c.!

Run sequentially:

1. Scan the text and count the characters frequency $f_\pi : \pi \in \Sigma$.
 - Note: We obtain S-prefixes of length 1.

2. For each $\pi : f_\pi > M$, expand character with its right neighbour and count the frequency of obtained S-prefixes (now length 2).

3. Repeat step two for S-prefixes of length 3, 4... until all f_π fit into the memory M.

8 Yue (1991)
Define **S-prefix** as the prefix of the suffix in the text.
Intuition: The S-prefix frequency f_π is $\#$ of leaves in the suffix subtree π. This determines the whole subtree size in w.c.!
Run sequentially:

1. Scan the text and count the characters frequency $f_\pi : \pi \in \Sigma$.
 - Note: We obtain S-prefixes of length 1.

2. For each $\pi : f_\pi > M$, expand character with its right neighbour and count the frequency of obtained S-prefixes (now length 2).

3. Repeat step two for S-prefixes of length 3, 4... until all f_π fit into the memory M.

4. To optimally fill the main memory combine the S-prefixes into groups fitting into the main memory as tight as possible.
 - Use First-Fit Decreasing heuristic for bin packing problem\(^8\).

\(^8\)Yue (1991)
Vertical partitioning

Analysis:

- For uniform string distributions $O \left(\log |\Sigma| \frac{n}{M} \right)$ scans.
 - Note: The main memory contains $O \left(\frac{n}{M} \right)$ S-prefixes of total size $O(M)$.
- First-Fit Decreasing heuristic requires $O \left(\left(\frac{n}{M} \right)^2 \right)$ time.
Vertical partitioning

Analysis:

- For uniform string distributions $O \left(\log |\Sigma| \frac{n}{M} \right)$ scans.
 - Note: The main memory contains $O \left(\frac{n}{M} \right)$ S-prefixes of total size $O(M)$.
- First-Fit Decreasing heuristic requires $O \left(\left(\frac{n}{M} \right)^2 \right)$ time.

Overall:

- $O \left(n \log |\Sigma| \frac{n}{M} + \left(\frac{n}{M} \right)^2 \right)$ time.
- $O \left(\frac{n}{B} \log |\Sigma| \frac{n}{M} \right)$ I/Os.
Horizontal partitioning

In parallel, for each group of S-prefixes, construct the suffix subtree:

1. Initialize the optimal length of S-prefixes range $= \mathcal{O}(M/n_M) = \mathcal{O}(M^2/n)$.

Note: The name Elastic Range.

2. Fill buffers with range characters following S-prefixes in the text.

3. Sort them in lexicographic order and remember their branching information (=LCP) and the original position (=SA).

4. While some of the sorted substrings are not unique, repeat steps two and three.

Note: Unique strings' buffers are used for non-unique ones in the next iteration, range is increasing, the frequency dropping.

5. Construct the suffix subtree using depth-first traversal and reading SA and LCP.
Horizontal partitioning

In parallel, for each group of S-prefixes, construct the suffix subtree:

1. Initialize the optimal length of S-prefixes

\[\text{range} = O \left(\frac{M}{n/M} \right) = O \left(\frac{M^2}{n} \right) \]

2. Note: The name Elastic Range.
Horizontal partitioning

In parallel, for each group of S-prefixes, construct the suffix subtree:

1. Initialize the optimal length of S-prefixes
 \[\text{range} = O \left(\frac{M}{n} \right) = O \left(\frac{M^2}{n} \right) \]
 - Note: The name Elastic Range.

2. Fill buffers with range characters following S-prefixes in the text.
Horizontal partitioning

In parallel, for each group of S-prefixes, construct the suffix subtree:

1. Initialize the optimal length of S-prefixes

 \[\text{range} = O \left(\frac{M}{n} \right) = O \left(\frac{M^2}{n} \right) \]

 Note: The name Elastic Range.

2. Fill buffers with range characters following S-prefixes in the text.

3. Sort them in lexicographic order and remember their branching information (=LCP) and the original position (=SA).
Horizontal partitioning

In parallel, for each group of S-prefixes, construct the suffix subtree:

1. Initialize the optimal length of S-prefixes
 \[range = O\left(\frac{M}{n}\right) = O\left(\frac{M^2}{n}\right) \]

 Note: The name Elastic Range.

2. Fill buffers with range characters following S-prefixes in the text.

3. Sort them in lexicographic order and remember their branching information (=LCP) and the original position (=SA).

4. While some of the sorted substrings are not unique, repeat steps two and three.

 Note: Unique strings’ buffers are used for non-unique ones in the next iteration, range is increasing, the frequency dropping.
Horizontal partitioning

In parallel, for each group of S-prefixes, construct the suffix subtree:

1. Initialize the optimal length of S-prefixes

 \[\text{range} = O \left(\frac{M}{\sqrt{M}} \right) = O \left(\frac{M^2}{n} \right) \]

 Note: The name Elastic Range.

2. Fill buffers with range characters following S-prefixes in the text.

3. Sort them in lexicographic order and remember their branching information (=LCP) and the original position (=SA).

4. While some of the sorted substrings are not unique, repeat steps two and three.

 Note: Unique strings’ buffers are used for non-unique ones in the next iteration, range is increasing, the frequency dropping.

5. Construct the suffix subtree using depth-first traversal and reading SA and LCP.
Horizontal partitioning

Analysis:
- Assuming random string distribution, the number of uniquely represented strings in $O(M)$ space is $|\Sigma|^{range}$
 - The number of step two and three iterations is bounded by $O(\log|\Sigma| M)$.
- Each iteration, filling the buffers is done in $O(M)$ time and $O(M/B)$ I/Os.
- Sorting can be done in $O(M)$ time using in-memory radix string sort and requires no I/O.
- Traversing the suffix subtree requires linear $O(M)$ time and $O(M/B)$ I/Os.
Horizontal partitioning

Analysis:

- Assuming random string distribution, the number of uniquely represented strings in $O(M)$ space is $|\Sigma|^{\text{range}}$.
 - The number of step two and three iterations is bounded by $O(\log |\Sigma| M)$.
- Each iteration, filling the buffers is done in $O(M)$ time and $O(M/B)$ I/Os.
- Sorting can be done in $O(M)$ time using in-memory radix string sort and requires no I/O.
- Traversing the suffix subtree requires linear $O(M)$ time and $O(M/B)$ I/Os.

Overall for constructing $O \left(\frac{n}{M} \right)$ suffix subtrees:

- $O \left(\frac{n}{p} \log |\Sigma| M \right)$ parallel time.
- $O \left(\frac{n}{pB} \log |\Sigma| M \right)$ parallel block transfers.
ERa despite being practically the fastest algorithm is not theoretically tight even for random input strings with uniform substring distribution.

Open problem: Is it possible to design a theoretically tight yet practically competitive algorithm for suffix tree construction?

Future work: Analyse ERa bottlenecks in practice and see if they match the critical terms in time and I/O complexities presented here.
Conclusion

- ERa despite being practically the fastest algorithm is **not theoretically tight** even for random input strings with uniform substring distribution.
- Open problem: Is it possible to design a theoretically tight yet practically competitive algorithm for suffix tree construction?
Conclusion

- ERa despite being practically the fastest algorithm is **not theoretically tight** even for random input strings with uniform substring distribution.

- Open problem: Is it possible to design a theoretically tight yet practically competitive algorithm for suffix tree construction?

- Future work: Analyse ERa bottlenecks in practice and see if they match the critical terms in time and I/O complexities presented here.
Thank you.

Matevž Jekovec
matevz.jekovec@fri.uni-lj.si
http://lusy.fri.uni-lj.si/en/mjekovec