
Theoretical aspects of ERa, the fastest practical
suffix tree construction algorithm

Matevž Jekovec

University of Ljubljana
Faculty of Computer and Information Science

Oct 10, 2013

Introduction Prerequisites ERa Conclusion

Text indexing problem

Problem statement

Given unstructured input text T consisting of n characters from
alphabet Σ build an index such that for query pattern P we:

determine whether P occurs in T in time O(P),

find all occurrences of P in T in time O(P + occ),

find the longest common prefix (LCP) of P and any suffix of
T in time O(LCP(P,T)).

Solution

Suffix tree and suffix array (SA) with LCP information are
fundamental data structures for indexing unstructured text.

Introduction Prerequisites ERa Conclusion

Text indexing problem

Problem statement

Given unstructured input text T consisting of n characters from
alphabet Σ build an index such that for query pattern P we:

determine whether P occurs in T in time O(P),

find all occurrences of P in T in time O(P + occ),

find the longest common prefix (LCP) of P and any suffix of
T in time O(LCP(P,T)).

Solution

Suffix tree and suffix array (SA) with LCP information are
fundamental data structures for indexing unstructured text.

Introduction Prerequisites ERa Conclusion

Text indexing problem

Problem statement

Given unstructured input text T consisting of n characters from
alphabet Σ build an index such that for query pattern P we:

determine whether P occurs in T in time O(P),

find all occurrences of P in T in time O(P + occ),

find the longest common prefix (LCP) of P and any suffix of
T in time O(LCP(P,T)).

Solution

Suffix tree and suffix array (SA) with LCP information are
fundamental data structures for indexing unstructured text.

Introduction Prerequisites ERa Conclusion

Suffix tree construction algorithms

Theoretical:

W (’73), McC (’78) U (’95) F-C et al. (’00)

Time Θ(n) Θ(n) Θ(n lg |Σ|)
Online No Yes Yes1

Cache-efficient No No Yes

Unbounded Σ No No Yes

Practical:

Semi-disk-based Out-of-core
TDD ST-Merge TRLS. B2ST WF ERa
(’04) (’05) (’07) (’09) (’09) (’11)

Time O(n2) O(n2) O(n2) O(n2) O(n2) O(n2)

Cache-eff. Yes Yes Yes Yes Yes Yes

String acc. Rnd. Rnd. Rnd. Seq. Seq. Seq.

Parallel No No No No Yes Yes

1Bedathur and Haritsa (2004)

Introduction Prerequisites ERa Conclusion

Suffix tree construction algorithms

Theoretical:

W (’73), McC (’78) U (’95) F-C et al. (’00)

Time Θ(n) Θ(n) Θ(n lg |Σ|)
Online No Yes Yes1

Cache-efficient No No Yes

Unbounded Σ No No Yes

Practical:

Semi-disk-based Out-of-core
TDD ST-Merge TRLS. B2ST WF ERa
(’04) (’05) (’07) (’09) (’09) (’11)

Time O(n2) O(n2) O(n2) O(n2) O(n2) O(n2)

Cache-eff. Yes Yes Yes Yes Yes Yes

String acc. Rnd. Rnd. Rnd. Seq. Seq. Seq.

Parallel No No No No Yes Yes
1Bedathur and Haritsa (2004)

Introduction Prerequisites ERa Conclusion

Suffix tree construction algorithms

Theoretical:

W (’73), McC (’78) U (’95) F-C et al. (’00)

Time Θ(n) Θ(n) Θ(n lg |Σ|)
Online No Yes Yes1

Cache-efficient No No Yes

Unbounded Σ No No Yes

Practical:

Semi-disk-based Out-of-core
TDD ST-Merge TRLS. B2ST WF ERa
(’04) (’05) (’07) (’09) (’09) (’11)

Time O(n2) O(n2) O(n2) O(n2) O(n2) O(n2)

Cache-eff. Yes Yes Yes Yes Yes Yes

String acc. Rnd. Rnd. Rnd. Seq. Seq. Seq.

Parallel No No No No Yes Yes
1Bedathur and Haritsa (2004)

Introduction Prerequisites ERa Conclusion

Suffix tree construction algorithms

Theoretical:

W (’73), McC (’78) U (’95) F-C et al. (’00)

Time Θ(n) Θ(n) Θ(n lg |Σ|)
Online No Yes Yes1

Cache-efficient No No Yes

Unbounded Σ No No Yes

Practical:

Semi-disk-based Out-of-core
TDD ST-Merge TRLS. B2ST WF ERa
(’04) (’05) (’07) (’09) (’09) (’11)

Time O(n2) O(n2) O(n2) O(n2) O(n2) O(n2)

Cache-eff. Yes Yes Yes Yes Yes Yes

String acc. Rnd. Rnd. Rnd. Seq. Seq. Seq.

Parallel No No No No Yes Yes
1Bedathur and Haritsa (2004)

Huge gap between the theoretical and
practical results!

Introduction Prerequisites ERa Conclusion

Suffix tree construction algorithms

Theoretical:

W (’73), McC (’78) U (’95) F-C et al. (’00)

Time Θ(n) Θ(n) Θ(n lg |Σ|)
Online No Yes Yes1

Cache-efficient No No Yes

Unbounded Σ No No Yes

Practical:

Semi-disk-based Out-of-core
TDD ST-Merge TRLS. B2ST WF ERa
(’04) (’05) (’07) (’09) (’09) (’11)

Time O(n2) O(n2) O(n2) O(n2) O(n2) O(n2)

Cache-eff. Yes Yes Yes Yes Yes Yes

String acc. Rnd. Rnd. Rnd. Seq. Seq. Seq.

Parallel No No No No Yes Yes
1Bedathur and Haritsa (2004)

Huge gap between the theoretical and
practical results!

Motivation

Analyse the fastest practical algorithm
and compare it to the theoretical ones.

Introduction Prerequisites ERa Conclusion

Suffix tree

1 $
2 A$
3 ABRA$
4 ABRAKADABRA$
5 ADABRA$
6 AKADABRA$
7 BRA$
8 BRAKADABRA$
9 DABRA$
10 KADABRA
11 RA$
12 RAKADABRA$

1 2 3 4 5 6 7 8 9 10 11 12

T=ABRAKADABRA$

12

$ A BRA

7

DABRA$

5

KADABRA$ RA

11

$ BRA

6

DABRA$

4

KADABRA$

8

$

1

KADABRA$

9

$

2

KADABRA$

10

$

3

KADABRA$

Introduction Prerequisites ERa Conclusion

Parallel External Memory model (PEM)2

Shared-memory model
describing well the modern
multi-core architecture.

Two-level memory hierarchy
w/ fast&limited private
caches on 1st level and
slow&unlimited main
memory on the 2nd .

Features:

P — # of processing
elements
B — block size
M — cache (main
memory) size

B

Memory
(n)

CPU1

Caches
(M)
B

blocksM
B

CPU2

CPUp

2Arge, Goodrich, Nelson, Sitchinava (2008)

Introduction Prerequisites ERa Conclusion

Parallel External Memory model (PEM)

We assume CREW PEM.

Data are read and stored on disk and not fitting into main
memory:

Denote first level as the main memory and second level as the
disk.

Performance metrics:

parallel time,
parallel block transfers bw/ disk and main memory.

Introduction Prerequisites ERa Conclusion

Suffix tree construction lower bounds

Sequential:
bounded Σ unbounded Σ

Time Ω(Sort(n)) Ω(Sort(n))

I/Os3 Ω(Sort(n)) Ω(Sort(n))

Space4 Ω(n lg |Σ|) bits Ω(n lg |Σ|) bits

Parallel on p processing units:
bounded Σ unbounded Σ

Parallel time Ω
(
n
p

)
Ω
(
n
p log n

)
Parallel I/Os5 Ω

(
n
pB

)
Ω
(

n
pB logM

B

n
B

)
Space4 Ω(n lg |Σ|) bits Ω(n lg |Σ|) bits

3EM model
4Uncompressed index
5PEM model

Introduction Prerequisites ERa Conclusion

Suffix tree construction lower bounds

Sequential:
bounded Σ unbounded Σ

Time Ω(Sort(n)) Ω(Sort(n))

I/Os3 Ω(Sort(n)) Ω(Sort(n))

Space4 Ω(n lg |Σ|) bits Ω(n lg |Σ|) bits

Parallel on p processing units:
bounded Σ unbounded Σ

Parallel time Ω(Sortp(n)) Ω(Sortp(n))

Parallel I/Os5 Ω(Sortp(n)) Ω(Sortp(n))

Space4 Ω(n lg |Σ|) bits Ω(n lg |Σ|) bits

3EM model
4Uncompressed index
5PEM model

Introduction Prerequisites ERa Conclusion

Suffix tree construction lower bounds

Sequential:
bounded Σ unbounded Σ

Time Ω(n) Ω(n log n)

I/Os3 Ω
(
n
B

)
Ω
(

n
B logM

B

n
M

)
Space4 Ω(n lg |Σ|) bits Ω(n lg |Σ|) bits

Parallel on p processing units:
bounded Σ unbounded Σ

Parallel time Ω
(
n
p

)
Ω
(
n
p log n

)
Parallel I/Os5 Ω

(
n
pB

)
Ω
(

n
pB logM

B

n
B

)
Space4 Ω(n lg |Σ|) bits Ω(n lg |Σ|) bits

3EM model
4Uncompressed index
5PEM model

Introduction Prerequisites ERa Conclusion

Suffix tree construction lower bounds

Sequential:
bounded Σ unbounded Σ

Time Ω(n) Ω(n log n)

I/Os3 Ω
(
n
B

)
Ω
(

n
B logM

B

n
M

)
Space4 Ω(n lg |Σ|) bits Ω(n lg |Σ|) bits

Parallel on p processing units:
bounded Σ unbounded Σ

Parallel time Ω
(
n
p

)
Ω
(
n
p log n

)
Parallel I/Os5 Ω

(
n
pB

)
Ω
(

n
pB logM

B

n
B

)
Space4 Ω(n lg |Σ|) bits Ω(n lg |Σ|) bits

3EM model
4Uncompressed index
5PEM model

Introduction Prerequisites ERa Conclusion

ERa - Elastic Range7

The fastest practical, parallel suffix tree construction
algorithm to date.

Time complexity: O(n2) w.c. — for extremely skewed text!

Yet, it’s fast in practice: Constructs and stores the human
genome’s suffix tree in 14 minutes on 16-core desktop PC w/
HDD storage!

Key idea:

DNA, music, proteins are almost random6

Suppose random input text and PEM model of computation:

What is expected time complexity?
What is expected I/O complexity?

6Heinz, Zobel, Williams (2002)
7Mansour, Allam, Skiadopoulos, Kalnis (2011)

Introduction Prerequisites ERa Conclusion

ERa - Elastic Range7

The fastest practical, parallel suffix tree construction
algorithm to date.

Time complexity: O(n2) w.c. — for extremely skewed text!

Yet, it’s fast in practice: Constructs and stores the human
genome’s suffix tree in 14 minutes on 16-core desktop PC w/
HDD storage!

Key idea:

DNA, music, proteins are almost random6

Suppose random input text and PEM model of computation:

What is expected time complexity?
What is expected I/O complexity?

6Heinz, Zobel, Williams (2002)
7Mansour, Allam, Skiadopoulos, Kalnis (2011)

Introduction Prerequisites ERa Conclusion

ERa - Elastic Range7

The fastest practical, parallel suffix tree construction
algorithm to date.

Time complexity: O(n2) w.c. — for extremely skewed text!

Yet, it’s fast in practice: Constructs and stores the human
genome’s suffix tree in 14 minutes on 16-core desktop PC w/
HDD storage!

Key idea:

DNA, music, proteins are almost random6

Suppose random input text and PEM model of computation:

What is expected time complexity?
What is expected I/O complexity?

6Heinz, Zobel, Williams (2002)
7Mansour, Allam, Skiadopoulos, Kalnis (2011)

Introduction Prerequisites ERa Conclusion

ERa - Elastic Range7

The fastest practical, parallel suffix tree construction
algorithm to date.

Time complexity: O(n2) w.c. — for extremely skewed text!

Yet, it’s fast in practice: Constructs and stores the human
genome’s suffix tree in 14 minutes on 16-core desktop PC w/
HDD storage!

Key idea:

DNA, music, proteins are almost random6

Suppose random input text and PEM model of computation:

What is expected time complexity?
What is expected I/O complexity?

6Heinz, Zobel, Williams (2002)
7Mansour, Allam, Skiadopoulos, Kalnis (2011)

Introduction Prerequisites ERa Conclusion

ERa steps

ERa constructs the suffix tree in two steps:
1 The vertical partitioning step determines the suffix subtrees

just fitting into M.
2 The horizontal partitioning step builds the actual suffix

subtrees.

Introduction Prerequisites ERa Conclusion

Vertical partitioning

Define S-prefix as the prefix of the suffix in the text.

Intuition: The S-prefix frequency fπ is # of leaves in the suffix
subtree π. This determines the whole subtree size in w.c.!
Run sequentially:

1 Scan the text and count the characters frequency fπ : π ∈ Σ.

Note: We obtain S-prefixes of length 1.

2 For each π : fπ > M, expand character with its right
neighbour and count the frequency of obtained S-prefixes
(now length 2).

3 Repeat step two for S-prefixes of length 3, 4... until all fπ fit
into the memory M.

4 To optimally fill the main memory combine the S-prefixes into
groups fitting into the main memory as tight as possible.

Use First-Fit Decreasing heuristic for bin packing problem8.

8Yue (1991)

Introduction Prerequisites ERa Conclusion

Vertical partitioning

Define S-prefix as the prefix of the suffix in the text.
Intuition: The S-prefix frequency fπ is # of leaves in the suffix
subtree π. This determines the whole subtree size in w.c.!

Run sequentially:
1 Scan the text and count the characters frequency fπ : π ∈ Σ.

Note: We obtain S-prefixes of length 1.

2 For each π : fπ > M, expand character with its right
neighbour and count the frequency of obtained S-prefixes
(now length 2).

3 Repeat step two for S-prefixes of length 3, 4... until all fπ fit
into the memory M.

4 To optimally fill the main memory combine the S-prefixes into
groups fitting into the main memory as tight as possible.

Use First-Fit Decreasing heuristic for bin packing problem8.

8Yue (1991)

Introduction Prerequisites ERa Conclusion

Vertical partitioning

Define S-prefix as the prefix of the suffix in the text.
Intuition: The S-prefix frequency fπ is # of leaves in the suffix
subtree π. This determines the whole subtree size in w.c.!
Run sequentially:

1 Scan the text and count the characters frequency fπ : π ∈ Σ.

Note: We obtain S-prefixes of length 1.

2 For each π : fπ > M, expand character with its right
neighbour and count the frequency of obtained S-prefixes
(now length 2).

3 Repeat step two for S-prefixes of length 3, 4... until all fπ fit
into the memory M.

4 To optimally fill the main memory combine the S-prefixes into
groups fitting into the main memory as tight as possible.

Use First-Fit Decreasing heuristic for bin packing problem8.

8Yue (1991)

Introduction Prerequisites ERa Conclusion

Vertical partitioning

Define S-prefix as the prefix of the suffix in the text.
Intuition: The S-prefix frequency fπ is # of leaves in the suffix
subtree π. This determines the whole subtree size in w.c.!
Run sequentially:

1 Scan the text and count the characters frequency fπ : π ∈ Σ.

Note: We obtain S-prefixes of length 1.

2 For each π : fπ > M, expand character with its right
neighbour and count the frequency of obtained S-prefixes
(now length 2).

3 Repeat step two for S-prefixes of length 3, 4... until all fπ fit
into the memory M.

4 To optimally fill the main memory combine the S-prefixes into
groups fitting into the main memory as tight as possible.

Use First-Fit Decreasing heuristic for bin packing problem8.

8Yue (1991)

Introduction Prerequisites ERa Conclusion

Vertical partitioning

Define S-prefix as the prefix of the suffix in the text.
Intuition: The S-prefix frequency fπ is # of leaves in the suffix
subtree π. This determines the whole subtree size in w.c.!
Run sequentially:

1 Scan the text and count the characters frequency fπ : π ∈ Σ.

Note: We obtain S-prefixes of length 1.

2 For each π : fπ > M, expand character with its right
neighbour and count the frequency of obtained S-prefixes
(now length 2).

3 Repeat step two for S-prefixes of length 3, 4... until all fπ fit
into the memory M.

4 To optimally fill the main memory combine the S-prefixes into
groups fitting into the main memory as tight as possible.

Use First-Fit Decreasing heuristic for bin packing problem8.

8Yue (1991)

Introduction Prerequisites ERa Conclusion

Vertical partitioning

Define S-prefix as the prefix of the suffix in the text.
Intuition: The S-prefix frequency fπ is # of leaves in the suffix
subtree π. This determines the whole subtree size in w.c.!
Run sequentially:

1 Scan the text and count the characters frequency fπ : π ∈ Σ.

Note: We obtain S-prefixes of length 1.

2 For each π : fπ > M, expand character with its right
neighbour and count the frequency of obtained S-prefixes
(now length 2).

3 Repeat step two for S-prefixes of length 3, 4... until all fπ fit
into the memory M.

4 To optimally fill the main memory combine the S-prefixes into
groups fitting into the main memory as tight as possible.

Use First-Fit Decreasing heuristic for bin packing problem8.

8Yue (1991)

Introduction Prerequisites ERa Conclusion

Vertical partitioning

Analysis:

For uniform string distributions O
(

log|Σ|
n
M

)
scans.

Note: The main memory contains O
(

n
M

)
S-prefixes of total

size O(M).

First-Fit Decreasing heuristic requires O
((

n
M

)2
)

time.

Overall:

O
(

n log|Σ|
n
M +

(
n
M

)2
)

time.

O
(

n
B log|Σ|

n
M

)
I/Os.

Introduction Prerequisites ERa Conclusion

Vertical partitioning

Analysis:

For uniform string distributions O
(

log|Σ|
n
M

)
scans.

Note: The main memory contains O
(

n
M

)
S-prefixes of total

size O(M).

First-Fit Decreasing heuristic requires O
((

n
M

)2
)

time.

Overall:

O
(

n log|Σ|
n
M +

(
n
M

)2
)

time.

O
(

n
B log|Σ|

n
M

)
I/Os.

Introduction Prerequisites ERa Conclusion

Horizontal partitioning

In parallel, for each group of S-prefixes, construct the suffix
subtree:

1 Initialize the optimal length of S-prefixes

range = O
(
M/ n

M

)
= O

(
M2

n

)
Note: The name Elastic Range.

2 Fill buffers with range characters following S-prefixes in the
text.

3 Sort them in lexicographic order and remember their branching
information (=LCP) and the original position (=SA).

4 While some of the sorted substrings are not unique, repeat
steps two and three.

Note: Unique strings’ buffers are used for non-unique ones in
the next iteration, range is increasing, the frequency dropping.

5 Construct the suffix subtree using depth-first traversal and
reading SA and LCP.

Introduction Prerequisites ERa Conclusion

Horizontal partitioning

In parallel, for each group of S-prefixes, construct the suffix
subtree:

1 Initialize the optimal length of S-prefixes

range = O
(
M/ n

M

)
= O

(
M2

n

)
Note: The name Elastic Range.

2 Fill buffers with range characters following S-prefixes in the
text.

3 Sort them in lexicographic order and remember their branching
information (=LCP) and the original position (=SA).

4 While some of the sorted substrings are not unique, repeat
steps two and three.

Note: Unique strings’ buffers are used for non-unique ones in
the next iteration, range is increasing, the frequency dropping.

5 Construct the suffix subtree using depth-first traversal and
reading SA and LCP.

Introduction Prerequisites ERa Conclusion

Horizontal partitioning

In parallel, for each group of S-prefixes, construct the suffix
subtree:

1 Initialize the optimal length of S-prefixes

range = O
(
M/ n

M

)
= O

(
M2

n

)
Note: The name Elastic Range.

2 Fill buffers with range characters following S-prefixes in the
text.

3 Sort them in lexicographic order and remember their branching
information (=LCP) and the original position (=SA).

4 While some of the sorted substrings are not unique, repeat
steps two and three.

Note: Unique strings’ buffers are used for non-unique ones in
the next iteration, range is increasing, the frequency dropping.

5 Construct the suffix subtree using depth-first traversal and
reading SA and LCP.

Introduction Prerequisites ERa Conclusion

Horizontal partitioning

In parallel, for each group of S-prefixes, construct the suffix
subtree:

1 Initialize the optimal length of S-prefixes

range = O
(
M/ n

M

)
= O

(
M2

n

)
Note: The name Elastic Range.

2 Fill buffers with range characters following S-prefixes in the
text.

3 Sort them in lexicographic order and remember their branching
information (=LCP) and the original position (=SA).

4 While some of the sorted substrings are not unique, repeat
steps two and three.

Note: Unique strings’ buffers are used for non-unique ones in
the next iteration, range is increasing, the frequency dropping.

5 Construct the suffix subtree using depth-first traversal and
reading SA and LCP.

Introduction Prerequisites ERa Conclusion

Horizontal partitioning

In parallel, for each group of S-prefixes, construct the suffix
subtree:

1 Initialize the optimal length of S-prefixes

range = O
(
M/ n

M

)
= O

(
M2

n

)
Note: The name Elastic Range.

2 Fill buffers with range characters following S-prefixes in the
text.

3 Sort them in lexicographic order and remember their branching
information (=LCP) and the original position (=SA).

4 While some of the sorted substrings are not unique, repeat
steps two and three.

Note: Unique strings’ buffers are used for non-unique ones in
the next iteration, range is increasing, the frequency dropping.

5 Construct the suffix subtree using depth-first traversal and
reading SA and LCP.

Introduction Prerequisites ERa Conclusion

Horizontal partitioning

In parallel, for each group of S-prefixes, construct the suffix
subtree:

1 Initialize the optimal length of S-prefixes

range = O
(
M/ n

M

)
= O

(
M2

n

)
Note: The name Elastic Range.

2 Fill buffers with range characters following S-prefixes in the
text.

3 Sort them in lexicographic order and remember their branching
information (=LCP) and the original position (=SA).

4 While some of the sorted substrings are not unique, repeat
steps two and three.

Note: Unique strings’ buffers are used for non-unique ones in
the next iteration, range is increasing, the frequency dropping.

5 Construct the suffix subtree using depth-first traversal and
reading SA and LCP.

Introduction Prerequisites ERa Conclusion

Horizontal partitioning

Analysis:

Assuming random string distribution, the number of uniquely
represented strings in O(M) space is |Σ|range

The number of step two and three iterations is bounded by
O(log|Σ| M).

Each iteration, filling the buffers is done in O(M) time and
O(M/B) I/Os.

Sorting can be done in O(M) time using in-memory radix
string sort and requires no I/O.

Traversing the suffix subtree requires linear O(M) time and
O(M/B) I/Os.

Overall for constructing O
(
n
M

)
suffix subtrees:

O
(
n
p log|Σ| M

)
parallel time.

O
(

n
pB log|Σ| M

)
parallel block transfers.

Introduction Prerequisites ERa Conclusion

Horizontal partitioning

Analysis:

Assuming random string distribution, the number of uniquely
represented strings in O(M) space is |Σ|range

The number of step two and three iterations is bounded by
O(log|Σ| M).

Each iteration, filling the buffers is done in O(M) time and
O(M/B) I/Os.

Sorting can be done in O(M) time using in-memory radix
string sort and requires no I/O.

Traversing the suffix subtree requires linear O(M) time and
O(M/B) I/Os.

Overall for constructing O
(
n
M

)
suffix subtrees:

O
(
n
p log|Σ| M

)
parallel time.

O
(

n
pB log|Σ| M

)
parallel block transfers.

Introduction Prerequisites ERa Conclusion

Conclusion

ERa despite being practically the fastest algorithm is not
theoretically tight even for random input strings with
uniform substring distribution.

Open problem: Is it possible to design a theoretically tight yet
practically competitive algorithm for suffix tree construction?

Future work: Analyse ERa bottlenecks in practice and see if
they match the critical terms in time and I/O complexities
presented here.

Introduction Prerequisites ERa Conclusion

Conclusion

ERa despite being practically the fastest algorithm is not
theoretically tight even for random input strings with
uniform substring distribution.

Open problem: Is it possible to design a theoretically tight yet
practically competitive algorithm for suffix tree construction?

Future work: Analyse ERa bottlenecks in practice and see if
they match the critical terms in time and I/O complexities
presented here.

Introduction Prerequisites ERa Conclusion

Conclusion

ERa despite being practically the fastest algorithm is not
theoretically tight even for random input strings with
uniform substring distribution.

Open problem: Is it possible to design a theoretically tight yet
practically competitive algorithm for suffix tree construction?

Future work: Analyse ERa bottlenecks in practice and see if
they match the critical terms in time and I/O complexities
presented here.

Introduction Prerequisites ERa Conclusion

Thank you.

Matevž Jekovec
matevz.jekovec@fri.uni-lj.si
http://lusy.fri.uni-lj.si/en/mjekovec Laboratorij za vseprisotne sisteme

Laboratory for Ubiquitous SYstems

LUSY

	Introduction
	Text indexing problem
	Suffix tree construction algorithms

	Prerequisites
	Suffix tree
	The Model of computation
	Suffix tree construction lower bounds

	ERa
	Overview
	Vertical partitioning
	Horizontal partitioning

	Conclusion

