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Introduction Prerequisites ERa Conclusion

Text indexing problem

Problem statement

Given unstructured input text T consisting of n characters from
alphabet Σ build an index such that for query pattern P we:

determine whether P occurs in T in time O(P),

find all occurrences of P in T in time O(P + occ),

find the longest common prefix (LCP) of P and any suffix of
T in time O(LCP(P,T )).

Solution

Suffix tree and suffix array (SA) with LCP information are
fundamental data structures for indexing unstructured text.
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Suffix tree construction algorithms

Theoretical:

W (’73), McC (’78) U (’95) F-C et al. (’00)

Time Θ(n) Θ(n) Θ(n lg |Σ|)
Online No Yes Yes1

Cache-efficient No No Yes

Unbounded Σ No No Yes

Practical:

Semi-disk-based Out-of-core
TDD ST-Merge TRLS. B2ST WF ERa
(’04) (’05) (’07) (’09) (’09) (’11)

Time O(n2) O(n2) O(n2) O(n2) O(n2) O(n2)

Cache-eff. Yes Yes Yes Yes Yes Yes

String acc. Rnd. Rnd. Rnd. Seq. Seq. Seq.

Parallel No No No No Yes Yes

1Bedathur and Haritsa (2004)
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Huge gap between the theoretical and
practical results!

Motivation

Analyse the fastest practical algorithm
and compare it to the theoretical ones.
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Suffix tree
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3   ABRA$
4   ABRAKADABRA$
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Parallel External Memory model (PEM)2

Shared-memory model
describing well the modern
multi-core architecture.

Two-level memory hierarchy
w/ fast&limited private
caches on 1st level and
slow&unlimited main
memory on the 2nd .

Features:

P — # of processing
elements
B — block size
M — cache (main
memory) size

B

Memory
(n)

CPU1

Caches
(M)
B

blocksM
B

CPU2

CPUp

2Arge, Goodrich, Nelson, Sitchinava (2008)
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Parallel External Memory model (PEM)

We assume CREW PEM.

Data are read and stored on disk and not fitting into main
memory:

Denote first level as the main memory and second level as the
disk.

Performance metrics:

parallel time,
parallel block transfers bw/ disk and main memory.
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Suffix tree construction lower bounds

Sequential:
bounded Σ unbounded Σ

Time Ω(Sort(n)) Ω(Sort(n))

I/Os3 Ω(Sort(n)) Ω(Sort(n))

Space4 Ω(n lg |Σ|) bits Ω(n lg |Σ|) bits

Parallel on p processing units:
bounded Σ unbounded Σ

Parallel time Ω
(
n
p

)
Ω
(
n
p log n

)
Parallel I/Os5 Ω

(
n
pB

)
Ω
(

n
pB logM

B

n
B

)
Space4 Ω(n lg |Σ|) bits Ω(n lg |Σ|) bits

3EM model
4Uncompressed index
5PEM model
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ERa - Elastic Range7

The fastest practical, parallel suffix tree construction
algorithm to date.

Time complexity: O(n2) w.c. — for extremely skewed text!

Yet, it’s fast in practice: Constructs and stores the human
genome’s suffix tree in 14 minutes on 16-core desktop PC w/
HDD storage!

Key idea:

DNA, music, proteins are almost random6

Suppose random input text and PEM model of computation:

What is expected time complexity?
What is expected I/O complexity?

6Heinz, Zobel, Williams (2002)
7Mansour, Allam, Skiadopoulos, Kalnis (2011)
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ERa steps

ERa constructs the suffix tree in two steps:
1 The vertical partitioning step determines the suffix subtrees

just fitting into M.
2 The horizontal partitioning step builds the actual suffix

subtrees.
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Vertical partitioning

Define S-prefix as the prefix of the suffix in the text.

Intuition: The S-prefix frequency fπ is # of leaves in the suffix
subtree π. This determines the whole subtree size in w.c.!
Run sequentially:

1 Scan the text and count the characters frequency fπ : π ∈ Σ.

Note: We obtain S-prefixes of length 1.

2 For each π : fπ > M, expand character with its right
neighbour and count the frequency of obtained S-prefixes
(now length 2).

3 Repeat step two for S-prefixes of length 3, 4... until all fπ fit
into the memory M.

4 To optimally fill the main memory combine the S-prefixes into
groups fitting into the main memory as tight as possible.

Use First-Fit Decreasing heuristic for bin packing problem8.

8Yue (1991)
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Vertical partitioning

Analysis:

For uniform string distributions O
(

log|Σ|
n
M

)
scans.

Note: The main memory contains O
(

n
M

)
S-prefixes of total

size O(M).

First-Fit Decreasing heuristic requires O
((

n
M

)2
)

time.

Overall:

O
(

n log|Σ|
n
M +

(
n
M

)2
)

time.

O
(

n
B log|Σ|

n
M

)
I/Os.
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Horizontal partitioning

In parallel, for each group of S-prefixes, construct the suffix
subtree:

1 Initialize the optimal length of S-prefixes

range = O
(
M/ n

M

)
= O

(
M2

n

)
Note: The name Elastic Range.

2 Fill buffers with range characters following S-prefixes in the
text.

3 Sort them in lexicographic order and remember their branching
information (=LCP) and the original position (=SA).

4 While some of the sorted substrings are not unique, repeat
steps two and three.

Note: Unique strings’ buffers are used for non-unique ones in
the next iteration, range is increasing, the frequency dropping.

5 Construct the suffix subtree using depth-first traversal and
reading SA and LCP.
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Horizontal partitioning

Analysis:

Assuming random string distribution, the number of uniquely
represented strings in O(M) space is |Σ|range

The number of step two and three iterations is bounded by
O(log|Σ| M).

Each iteration, filling the buffers is done in O(M) time and
O(M/B) I/Os.

Sorting can be done in O(M) time using in-memory radix
string sort and requires no I/O.

Traversing the suffix subtree requires linear O(M) time and
O(M/B) I/Os.

Overall for constructing O
(
n
M

)
suffix subtrees:

O
(
n
p log|Σ| M

)
parallel time.

O
(

n
pB log|Σ| M

)
parallel block transfers.
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Conclusion

ERa despite being practically the fastest algorithm is not
theoretically tight even for random input strings with
uniform substring distribution.

Open problem: Is it possible to design a theoretically tight yet
practically competitive algorithm for suffix tree construction?

Future work: Analyse ERa bottlenecks in practice and see if
they match the critical terms in time and I/O complexities
presented here.
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Thank you.

Matevž Jekovec
matevz.jekovec@fri.uni-lj.si
http://lusy.fri.uni-lj.si/en/mjekovec Laboratorij za vseprisotne sisteme

Laboratory for Ubiquitous SYstems
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