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Problem statement

Given unstructured input string S consisting of N characters from
alphabet X of size o build an index such that for the pattern P we:

o determine whether P occurs in S in time O(P),
o find all occurrences of P in S in time O(P + occ),

o find the longest common prefix (LCP) of P and any suffix of
S in time O(LCP(P,S)).
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Text indexing problem

Problem statement

Given unstructured input string S consisting of N characters from
alphabet X of size o build an index such that for the pattern P we:

o determine whether P occurs in S in time O(P),
o find all occurrences of P in S in time O(P + occ),

o find the longest common prefix (LCP) of P and any suffix of
S in time O(LCP(P,S)).

| A\

Solution

Suffix tree and suffix array (SA) with LCP information are
fundamental data structures for indexing unstructured text.
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Suffix tree — Example

T=ABRAKADABRA$
s

AS

ABRA$
ABRAKADABRA$
ADABRAS KADABRA$
AKADABRAS$
BRAS Bl EXEN
BRAKADABRA$
DABRA$

10 KADABRA

11 RA$

12 RAKADABRA$

CoNOOUEWNKE
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Suffix tree construction algorithms

@ Theoretical:

W ('73), McC ('78) | U ('95) | F-C et al. ('00)
O(N) O(N) O(NlgN)
No Yes Yes!
String String | Result+String
No No Yes
No No PDAM

!Bedathur and Haritsa (2004)
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Suffix tree construction algorithms

@ Theoretical:

W ('73), McC ('78) | U ('95) | F-C et al. ('00)
O(N) O(N) O(NlgN)
No Yes Yes!
String String | Result+String
NA N~ Yes

Huge gap between the theoretical and J PDAM

~ practical results!
o Practican.

!Bedathur and Haritsa (2004)



Introduction
°

Suffix tree construction lower bounds

o Sequential:

Q(Sort(N)) Q(Sort(N))
Q(Sort(N)) Q(Sort(N))
Q(Nlgo) bits | Q(Nlgo) bits

2EM model
3Uncompressed index in word RAM
*PEM model



Introduction
°

Suffix tree construction lower bounds

@ Sequential:

Q(Sort(N))

Q(Sort(N))

Q(Sort(N))

Q(Sort(N))

Q(N1g o) bits

Q(N1g o) bits

o Parallel on p processing units:

Q(Sort,(N))

Q(Sort,(N))

Q(Sort,(N)) | Q(Sort,(N))

Q(Nlgo) bits | Q(Nlgo) bits

2EM model
3Uncompressed index in word RAM
*PEM model



Introduction
°

Suffix tree construction lower bounds

@ Sequential:

Q(N) Q(Nlog N)
Q(f) | 2(Hogyt)
Q(Nlgo) bits | Q(Nlgo) bits

o Parallel on p processing units:

2 (5logy &)

Q(Nlg o) bits

2EM model
3Uncompressed index in word RAM
*PEM model
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Challenges

Theoretical algorithms: Lack of locality of reference.

Goal: Use scans only both for input text and the resulting suffix
tree!

Counterintuitive: Input text is arbitrary, suffix tree is
lexicographically ordered.
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Challenges contd.

1/O efficient solution (eg. WF-ERA, B2ST-PCF):
Q Scan part of the input text from the disk,

@ do in-memory sorting (=random accesses in fast memory
only!),

© construct the corresponding part of the suffix tree,

Q glue parts together,

@ and contiguously write it to disk.
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ERA — Elastic Range®

@ The fastest practical, parallel suffix tree construction
algorithm to date.
o Time complexity: O(N?) w.c. — for extremely skewed text!

o Yet, it's fast in practice: Constructs and stores the human
genome's suffix tree in 20 minutes on 16-core desktop PC
with HDD or 13 minutes with SSD!

*Mansour, Allam, Skiadopoulos, Kalnis (2011)
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Horizontal partitioning
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Vertical })’éﬂitioning

ERA constructs the suffix tree in two steps:

@ The vertical partitioning step determines 1) the suffix
subtrees just fitting into the main memory M and 2)
constructs the suffix tree top.

Q The horizontal partitioning step builds the actual suffix
subtrees.



ERA contd.

Algorithm 1: ERA

Input: String S, Alphabet ¥, Processors P, Private cache size M

Output: Suffix tree T

Ttop; G « VerticalPartitioning(S, ¥, M)

T < Tiop

while |G| > 0 do

for p € P do in parallel

if |G| > 0 then

7+ G.pop()
Tr < HorizontalPartitioning(S, %, )
Link(T, Tx)

0 N O s WN =

9 return T
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Vertical partitioning

Define S-prefix 7 as the prefix of the suffixes in the text.
Idea: The S-prefix frequency f; equals # of leaves in the suffix
subtree corresponding to w. Assume 2f; is the w. c. subtree size.
Vertical partitioning steps:
Q Scan the text and obtain the characters frequency f, : 7 € ¥.
o We counted all S-prefixes of length 1.

Q For each 7 : f, > M, expand S-prefix with the right character
and count the frequency of obtained S-prefixes (now length 2).

O Repeat step two for S-prefixes of length 3, 4..., until all 7 just
fit into the memory M.

@ Extra: To optimally fill the main memory, combine the
S-prefixes into virtual groups G, fitting into the main memory
as tight as possible.

o Use First-Fit Decreasing heuristic for bin packing problem®.

®Yue (1991)
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Vertical partitioning — Example

m™ = ACC
Frequency fACC =12

TAACCCTA
ACCCTAAC
CCTAACCC
TAACCCTA
ACCCTAAC
CCTAACCC
TAACCCTA
ACCCTAAC
CCTAACCC
TAACCCTA
ACCCTAAC
CCTAACCC
TAAC
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ERA

Horizontal partitioning

For each virtual group, construct the corresponding suffix subtrees
in parallel:

Q Locate and store all positions of S-prefixes for the virtual
group. Each of located S-prefixes is to become a leaf in the
working suffix subtree.

Q Calculate the optimal buffer length range

o Note: The name Elastic Range.

© Read the next range characters for each S-prefix occurrence.

@ Do in-memory sorting of read text, remember branching
information (=LCP) and the original position (=SA).

@ Until all the read buffers are unique, goto step 2.

o In the next step: While less leafs are orphans, range increases,
frequency drops.

Q Construct suffix subtree in D-F manner using SA and LCP.
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Model of computation

Parallel External Memory model (PEM):”

o Shared memory model,
@ 2-level memory hierarchy: - Memory
- aches
o p .processors, each with ) (;)
private cache of size M 8 O
o0 O LJ M 00 O LJ
bytes. e e o |Bblocks oo oo oo
1 o 00 o0 e O o o
o parallel memory transfers 0 eee o0 o
. . L 0 O
in blocks of size B bytes. e o * sees
- e AR
@ Performance metrics: LY SRR
- : H o o o o
o parallel time, : — s e e e
o parallel block transfers CPU, . s ses
(cache complexity). s s e oo oo oo

@ Concurrent reads assumed.

" Arge, Goodrich, Nelson, Sitchinava 2008
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Formal analysis
°

Assumption

If worst-case input text for ERA is skewed:
T = AAA...

then
o vertical partitioning requires N scans = O(N?) comparisons,

. N2
o cache complexity O (§>

Our assumption:

o Input text is random (viable for a single human genome,
proteins).
1

o At any place the probability of each character to occur is .

o Goal: Calculate expected time and cache complexity.
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Algorithm 2: VerticalPartitioning

Input: Input string S, alphabet X, 15t level memory size M
Output: Set of VirtualTrees

1 VirtualTrees < )

2 P+

3 P’ + {V symbol s € ¥ generate a S-prefix 7; € P'}

4 repeat

5 scan input string S

6 count in S the frequency f;; of every S-prefix m; € P’
7 forall the ; € P’ do

8 if 0 < f;; <M then add 7; to P

9 else forall the symbol s € ¥ do add ;s to P’

10 remove 7; from P’

11 until P’ =
12 sort P in descending f;, order

13 repeat

14 G+ 0

15 add P.head to G and remove the item from P

16 curr <— next item in P

17 while NOT end of P do

18 if feurr + SUM,c6(f,;) < M then

19 L add curr to G and remove the item from P
20 curr < next item in P

21 add G to VirtualTrees

22 until P =)
23 return VirtualTrees
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Analysis: Vertical partitioning

Expected behavior:
O Extension of S-prefixes:
o Initially o S-prefixes of frequency f, = g each.
f. divided by o each iteration until 7, < M.
Total log, N — log, M = log, % iterations.
Finally % unique S-prefixes with frequency g < fpr <M.

®© © o

Q@ Atomic sorting the frequencies using one of the
comparison-based sorting algorithms.
@ Virtual trees construction (bin packing problem):

o At least 1 and at most o S-prefixes are packed each iteration.
o External loop iterated between % and % times.
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Analysis: Vertical partitioning — Time

Q Extension of S-prefixes
log,, % ) 2(N_M
Zl (scan(n) + o'*1) = log,, & - scan(n) + UM(.O_:M) =
=
O (Nlog, % + %)
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Analysis: Vertical partitioning — Time

Q Extension of S-prefixes

log,, % '
S (can(o) + 0741) =g, 3 - scon(n) + 40—
i=1
O (Nlog, 5 + %)
@ Sorting
O (1118 1)
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Analysis: Vertical partitioning — Time

Q Extension of S-prefixes

log, N
?j:lM (scan(n) + o'*1) = log,, & - scan(n) + U,;(.,::%) =
0 (N log,, % + %)
Q Sorting
O (1 'e m)
© Virtual trees construction
o((#))
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Analysis: Vertical partitioning — Time

Q Extension of S-prefixes

N

|0ig:§:1M (scan(n) + o'*1) = log,, & - scan(n) + 0:4(.,::%) =
0 (N log,, % + %)

Q Sorting
O (1 'e m)

© Virtual trees construction
o((#))

Overall:
o lfo<M: O (Nloga % + (%)2>

o If o > M: O(Nloga%+%+%|g%+(%)2)
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Analysis: Vertical partitioning — /O

Q Extension of S-prefixes

o Line 6: scan(N) for reading
Pl-0()
If |P| < M: no |/Os for writing f
If [P > M: \TN{| = MWZ I/Os for storing f,.

o Lines 7-10:

If |[P'] < M: no1/Os

If [P'| > M: B = N 1/0s
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Analysis: Vertical partitioning — /O

Q Extension of S-prefixes
o Line 6: scan(N) for reading
1= 0%
If |P| < M: no |/Os for writing f
If [P > M: ‘—’Vfl = MWZ I/Os for storing f,.
o Lines 7-10:
If |[P'] < M: no1/Os
If |P'| > M: 2 = N 1/0s
@ Sorting |P| = ¥ elements:
If M > +/N: no I/Os
If M < VN: O(515 lo %%) 1/Os
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Analysis: Vertical partitioning — /O

Q Extension of S-prefixes
o Line 6: scan(N) for reading
Pl=0(%)
If |P| < M: no |/Os for writing f
If [P > M: ‘—’Vfl = MWZ I/Os for storing f,.
o Lines 7-10:
If |[P'] < M: no1/Os
If |P'| > M: 2 = N 1/0s
@ Sorting |P| = ¥ elements:
If M > +/N: no I/Os

N N_
If M < VN: O(55 log gy wg) 1/0s
@ Virtual tree G < I\/I:
M > /N: no I/Os
M < V/N: 1El = N 1/0s
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Analysis: Vertical partitioning — /O contd.

Overall:

o If M > /N:
O (5 log, )
o If M < V/N:
0] (Ioga% . (%—i—l\/lz) +%Iog% %—i— (%)2)
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Algorithm 3: HorizontalPartitioning.SubTreePrepare
Input: Input string S, S-prefix 7
Output: Arrays SA and LCP corresponding suffix sub-tree 7,

1 SA contains the locations of S-prefix 7 in string S

2 LCP « {}

3

4

5 Buf + {}

6 P« {0,1,...,|L|—1}

7 start + |x|

8 while there exists an undefined Buf[i], 1 < i < |SA| — 1 do
9 range < GetRangeOfSymbols

10 for i 0 to |SA| — 1 do

1 if ISA[i] # done then
12 Buf[ISA[i]] < ReadRange(S, SA[ISA[i]] + start, range)
// ReadRange(S,a,b) reads b symbols of S starting at
position a

13 for every active area AA do

14 Reorder the elements of Buf, P and SA in AA so that Buf
is lexicographically sorted. In the process maintain the
index ISA

15 If two or more elements {ay, ..., a;} € AA,2 < t, exist such
that Buf[a1] = ... = Buf[a;] introduce for them a new

L active area

16 for all i such that Buf[i] is not defined, 1 < i < |SA| — 1 do

17 cp is the common prefix of Buf[i — 1] and Buf[i]

18 if [cp| < range then

19 Buf[i] « (Buf[i — 1][|cp|], Buf[i][|cpl], start + |cp|)

20 if Buf[i — 1] is defined or i = 1 then

21 L Mark ISA[P[i — 1]] and A[i — 1] as done

22 if Buf[i+ 1] is defined or i = [SA] — 1 then

23 Mark ISA[P[i]] and Ali] as done // last element of

an active area

24 start < start + range

25 return (SA,LCP)
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k is reached.



Formal analysis
000000®00

Analysis: Horizontal partitioning

Expected behaviour:

@ Define n the number of unfinished branches, then
n-range = O(M).

o Intuitively n decreases and range increases during execution of
lines 8-24.

o For length k, there can be at most o* unique strings. For
random text and step 1 < j < k, strings are non-unique until
k is reached.

o If O(M) random strings need to be processed, then lines 8-24
is iterated O(log, M) times. The big-oh constant depends on
range.
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Analysis: Horizontal partitioning — Time

Each iteration:

@ Lines 10-12 required n time to fill the buffers (constant time
read).

@ String sorting requires O(n - range) time since the average
distinguising prefix size equals O(range).

@ Lines 16-23 require O(n - range) time in the worst case.

Overall: Assuming p processors equally balanced after processing
O(N/M) virtual groups require

0 (ﬂM) -0 (ﬂ log,, M)
M p p
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Analysis: Horizontal partitioning — 1/0O

@ Cache misses occur in lines 10-12 only:
o Ifn> %, then O (%) 1/Os.
o Else: O(n) 1/0s
Q When does the change from n > % to n < % occur?

© Assuming uniformly random text, n = ¢ - M for some constant
c all the time! (all branches are open until the last iteration)

© Suffix subtree construction from SA and LCP requires a single
scan(N) 1/Os only and is omitted.

@ 1/0 complexity for horizontal partitioning is thus

) (min (M, g) - log,, M)



Formal analysis
.




Formal analysis
.

Wrap-up

Parallel time complexity of ERA (assuming o < M):

N N\ N
O(Nloggﬁ+<ﬂ> —i—;loggM)

Parallel cache complexity of ERA (assuming M > v/N):

; N
0 <ﬂ log, ﬂ n min (I\/I, E) -Iog(,M)
7 p

B
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Testing environment:
@ 2x 16-core AMD Opteron 6272 ©2,100 MHz
128 GiB RAM
o Seagate Baracuda 250 GB, 7,200 RPM, 32 MiB cache, SATA
@ Ubuntu server 12.04, Linux kernel 3.11.0
o ext4 file system, deadline |/O scheduler

(]

ERA parameters:
@ Memory size per core: 2 GiB
o Input text: Human genome HG18.txt, 2.8 Gbp

ERA modification: Call £sync() after writing each file.
ERA output:

o Total suffix tree size: 77.3 GB stored in 187 files
® Tiop size: 10.2 KB
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ERA execution time per # of CPUs
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Results — 1

ERA execution time per # of CPUs

time [s]
e

 of proc
ERA speedup per # of CPUs

# of proc
ERA efficiency per # of CPUs.

The time increases as we increase the number of cores.
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Results — 2

So what is the machine doing?
string cpy Parsing and copying the string.
vertpart Vertical partitioning.
cntl, ent®* Horizontal partitioning: determining locations of
S-prefix in virtual trees of size 1 or > 1.
filbuf Horizontal partitioning: reading range characters
from S-prefix locations.
sort Horizontal partitioning: string sorting, implicit LCP,
SA construction.

write Horizontal partitioning: extraction from LCP and SA
to suffix tree, write to disk.
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Results — 2 contd.
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Results — 2 contd.
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Results — 2 contd.

parallel10_devnullprobability mpstat p00
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Hypotheis 1

Observation 1: The majority of time is spent writing the final
result to the disk.

Hypothesis 1: Problem is the disk performance, so replace HDD
with SSD.
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Hypotheis 2

Observation 2: The amount of time for writting decreased, but as
the number of cores grows, it is still substantial.

Hypothesis 2: There it is still a problem with a disk performance
and consequently further speed-up disk by writting to /dev/null.
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Hypotheis 3

Observation 3: Things are getting better, but there is still an
increase in time when the number of cores is increased.

Hypothesis 3: 77

Check in more detail what the processes are doing.
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Results — 5 (p = 16)
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Results — 5 (p = 16), strace
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Results — 5 (p = 32)
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Results — 5 (p = 32), strace
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Conclusion

Conclusion

o Huge gap between the theoretical time and /O asymptotically
tight algorithms and the practical ones.

o ERA despite being practically the fastest algorithm is not
theoretically tight even for random input strings with
uniform substring distribution.

Open challenges:
@ Analyse ERA bottlenecks for further improvements (see if they
match the critical terms in time and 1/O complexities).
@ Shall we choose some other basic technique for the
implementation of a practical algorithm?

@ Design a theoretically tight yet practically competitive parallel
algorithm for suffix tree construction.
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Thank you.
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Extra — List of all experiments

Shown at the presentation:
o Execution time for different p, speed-up, efficiency.
o CPU times, iostat and mpstat per different phases for
p=1{1,2,3,4,6,8,12,16,20,24,27,32}.
iostat output for various p.
mpstat output for various p.
Work per core for single execution for p = 32.

Using strace, fetching read, write, 1seek syscalls.
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Extra — List of all experiments contd.

Test scenarios:
o Original code + added fsync (), various # of cores, various
mem. size per core.
o Various string buffer sizes BUF_TYPE= {8, 16, 32, 64} bit.
o Integration of Multikey cached quicksort
(Rantala-Bentley-Sedgewick) instead of GNU gsort.
@ Maximum limit of simultaneously opened files for writing
F=1{1,2,3,4,56,12,16}.
@ Output to /dev/null with probability Pr =[0,0.1...1].
o Separated disk for writing and reading.
@ SSD for reading and/or writing.
Different file system schedulers: noop, default, cfq.

(+]

Different file system max queue length.
Output to raw device without file system.

e 6 o

Execution on 12x Raspberry 7 with shared NFS storage.
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