ERA revisited: Theoretical and Experimental

evaluation

Matevz Jekovec, Andrej Brodnik

University of Ljubljana
Faculty of Computer and Information Science

KAUST, March 1-5, 2014

Introduction
[1}

Text indexing problem

Introduction
[1}

Text indexing problem

Problem statement

Given unstructured input string S consisting of N characters from
alphabet X of size o build an index such that for the pattern P we:

o determine whether P occurs in S in time O(P),
o find all occurrences of P in S in time O(P + occ),

o find the longest common prefix (LCP) of P and any suffix of
S in time O(LCP(P,S)).

Introduction
[1}

Text indexing problem

Problem statement

Given unstructured input string S consisting of N characters from
alphabet X of size o build an index such that for the pattern P we:

o determine whether P occurs in S in time O(P),
o find all occurrences of P in S in time O(P + occ),

o find the longest common prefix (LCP) of P and any suffix of
S in time O(LCP(P,S)).

| A\

Solution

Suffix tree and suffix array (SA) with LCP information are
fundamental data structures for indexing unstructured text.

Introduction
oce

Suffix tree — Example

T=ABRAKADABRA$
s

AS

ABRA$
ABRAKADABRA$
ADABRAS KADABRA$
AKADABRAS$
BRAS Bl EXEN
BRAKADABRA$
DABRA$

10 KADABRA

11 RA$

12 RAKADABRA$

CoNOOUEWNKE

Introduction
°

Suffix tree construction algorithms

@ Theoretical:

W ('73), McC ('78) | U ('95) | F-C et al. ('00)
O(N) O(N) O(NlgN)
No Yes Yes!
String String | Result+String
No No Yes
No No PDAM

!Bedathur and Haritsa (2004)

Introduction

Suffix tree construction algorithms

@ Theoretical:

W ('73), McC ('78) | U ('95) | F-C et al. ('00)
O(N) O(N) O(NlgN)
No Yes Yes!
String String | Result+String
No No Yes
No No PDAM

o Practical:

!Bedathur and Haritsa (2004)

Introduction

Suffix tree construction algorithms

@ Theoretical:

W ('73), McC ('78) | U ('95) | F-C et al. ('00)
O(N) O(N) O(NlgN)
No Yes Yes!
String String | Result+String
NA N~ Yes

Huge gap between the theoretical and J PDAM

~ practical results!
o Practican.

!Bedathur and Haritsa (2004)

Introduction
°

Suffix tree construction lower bounds

o Sequential:

Q(Sort(N)) Q(Sort(N))
Q(Sort(N)) Q(Sort(N))
Q(Nlgo) bits | Q(Nlgo) bits

2EM model
3Uncompressed index in word RAM
*PEM model

Introduction
°

Suffix tree construction lower bounds

@ Sequential:

Q(Sort(N))

Q(Sort(N))

Q(Sort(N))

Q(Sort(N))

Q(N1g o) bits

Q(N1g o) bits

o Parallel on p processing units:

Q(Sort,(N))

Q(Sort,(N))

Q(Sort,(N)) | Q(Sort,(N))

Q(Nlgo) bits | Q(Nlgo) bits

2EM model
3Uncompressed index in word RAM
*PEM model

Introduction
°

Suffix tree construction lower bounds

@ Sequential:

Q(N) Q(Nlog N)
Q(f) | 2(Hogyt)
Q(Nlgo) bits | Q(Nlgo) bits

o Parallel on p processing units:

2 (5logy &)

Q(Nlg o) bits

2EM model
3Uncompressed index in word RAM
*PEM model

Design goals
[1}

Challenges

Design goals
[1}

Challenges

Theoretical algorithms: Lack of locality of reference.

Design goals
[1}

Challenges

Theoretical algorithms: Lack of locality of reference.
Goal: Use scans only both for input text and the resulting suffix
tree!

Design goals
[1}

Challenges

Theoretical algorithms: Lack of locality of reference.

Goal: Use scans only both for input text and the resulting suffix
tree!

Counterintuitive: Input text is arbitrary, suffix tree is
lexicographically ordered.

Design goals
oce

Challenges contd.

1/O efficient solution (eg. WF-ERA, B2ST-PCF):
Q Scan part of the input text from the disk,

Design goals
oce

Challenges contd.

1/O efficient solution (eg. WF-ERA, B2ST-PCF):
Q Scan part of the input text from the disk,

@ do in-memory sorting (=random accesses in fast memory
only!),

Design goals
oce

Challenges contd.

1/O efficient solution (eg. WF-ERA, B2ST-PCF):
Q Scan part of the input text from the disk,

@ do in-memory sorting (=random accesses in fast memory
only!),

© construct the corresponding part of the suffix tree,

Design goals
oce

Challenges contd.

1/O efficient solution (eg. WF-ERA, B2ST-PCF):
Q Scan part of the input text from the disk,

@ do in-memory sorting (=random accesses in fast memory
only!),
© construct the corresponding part of the suffix tree,

Q glue parts together,

Design goals
oce

Challenges contd.

1/O efficient solution (eg. WF-ERA, B2ST-PCF):
Q Scan part of the input text from the disk,

@ do in-memory sorting (=random accesses in fast memory
only!),

© construct the corresponding part of the suffix tree,

Q glue parts together,

@ and contiguously write it to disk.

ERA
[Tole}

ERA — Elastic Range®

*Mansour, Allam, Skiadopoulos, Kalnis (2011)

ERA
[Tole}

ERA — Elastic Range®

@ The fastest practical, parallel suffix tree construction
algorithm to date.

®Mansour, Allam, Skiadopoulos, Kalnis (2011)

ERA
[Tole}

ERA — Elastic Range®

@ The fastest practical, parallel suffix tree construction
algorithm to date.

o Time complexity: O(N?) w.c. — for extremely skewed text!

®Mansour, Allam, Skiadopoulos, Kalnis (2011)

ERA
[Tole}

ERA — Elastic Range®

@ The fastest practical, parallel suffix tree construction
algorithm to date.
o Time complexity: O(N?) w.c. — for extremely skewed text!

o Yet, it's fast in practice: Constructs and stores the human
genome's suffix tree in 20 minutes on 16-core desktop PC
with HDD or 13 minutes with SSD!

*Mansour, Allam, Skiadopoulos, Kalnis (2011)

ERA contd.

-] 1 A
In-memory trie AN

I \\ Grouping

Horizontal partitioning
A

/ \\ A

! \

Vertical ‘E)'grtitioning

ERA constructs the suffix tree in two steps:

ERA contd.

o0 e

g A

£

.8 /

ol \ v / LA
E / | Groupin / .
= \ ping /Elastic |

!

B / \ / range |\
5 . 4 / \\
T I 4 I

h Verticai‘f)gl:titioning /
ERA constructs the suffix tree in two steps:
@ The vertical partitioning step determines 1) the suffix

subtrees just fitting into the main memory M and 2)
constructs the suffix tree top.

ERA contd.

Horizontal partitioning

/

/

~f \ / i
!) / \

Vertical })’éﬂitioning

ERA constructs the suffix tree in two steps:

@ The vertical partitioning step determines 1) the suffix
subtrees just fitting into the main memory M and 2)
constructs the suffix tree top.

Q The horizontal partitioning step builds the actual suffix
subtrees.

ERA contd.

Algorithm 1: ERA

Input: String S, Alphabet ¥, Processors P, Private cache size M

Output: Suffix tree T

Ttop; G « VerticalPartitioning(S, ¥, M)

T < Tiop

while |G| > 0 do

for p € P do in parallel

if |G| > 0 then

7+ G.pop()
Tr < HorizontalPartitioning(S, %,)
Link(T, Tx)

0 N O s WN =

9 return T

ERA
[1]

Vertical partitioning

Define S-prefix 7 as the prefix of the suffixes in the text.

®Yue (1991)

ERA
[1]

Vertical partitioning

Define S-prefix 7 as the prefix of the suffixes in the text.
Idea: The S-prefix frequency f; equals # of leaves in the suffix
subtree corresponding to w. Assume 2f; is the w. c. subtree size.

®Yue (1991)

ERA
[1]

Vertical partitioning

Define S-prefix 7 as the prefix of the suffixes in the text.
Idea: The S-prefix frequency f; equals # of leaves in the suffix
subtree corresponding to w. Assume 2f; is the w. c. subtree size.
Vertical partitioning steps:
Q Scan the text and obtain the characters frequency f, : 7 € ¥.
o We counted all S-prefixes of length 1.

®Yue (1991)

ERA
[1]

Vertical partitioning

Define S-prefix 7 as the prefix of the suffixes in the text.
Idea: The S-prefix frequency f; equals # of leaves in the suffix
subtree corresponding to w. Assume 2f; is the w. c. subtree size.
Vertical partitioning steps:

Q Scan the text and obtain the characters frequency f, : 7 € ¥.

o We counted all S-prefixes of length 1.
Q For each 7 : f, > M, expand S-prefix with the right character
and count the frequency of obtained S-prefixes (now length 2).

®Yue (1991)

ERA
[1]

Vertical partitioning

Define S-prefix 7 as the prefix of the suffixes in the text.
Idea: The S-prefix frequency f; equals # of leaves in the suffix
subtree corresponding to w. Assume 2f; is the w. c. subtree size.
Vertical partitioning steps:
Q Scan the text and obtain the characters frequency f, : 7 € ¥.
o We counted all S-prefixes of length 1.

Q For each 7 : f, > M, expand S-prefix with the right character
and count the frequency of obtained S-prefixes (now length 2).

O Repeat step two for S-prefixes of length 3, 4..., until all 7 just
fit into the memory M.

®Yue (1991)

ERA
[1]

Vertical partitioning

Define S-prefix 7 as the prefix of the suffixes in the text.
Idea: The S-prefix frequency f; equals # of leaves in the suffix
subtree corresponding to w. Assume 2f; is the w. c. subtree size.
Vertical partitioning steps:
Q Scan the text and obtain the characters frequency f, : 7 € ¥.
o We counted all S-prefixes of length 1.

Q For each 7 : f, > M, expand S-prefix with the right character
and count the frequency of obtained S-prefixes (now length 2).

O Repeat step two for S-prefixes of length 3, 4..., until all 7 just
fit into the memory M.

@ Extra: To optimally fill the main memory, combine the
S-prefixes into virtual groups G, fitting into the main memory
as tight as possible.

o Use First-Fit Decreasing heuristic for bin packing problem®.

®Yue (1991)

ERA

oe

Vertical partitioning — Example

m™ = ACC
Frequency fACC =12

TAACCCTA
ACCCTAAC
CCTAACCC
TAACCCTA
ACCCTAAC
CCTAACCC
TAACCCTA
ACCCTAAC
CCTAACCC
TAACCCTA
ACCCTAAC
CCTAACCC
TAAC

ERA

Horizontal partitioning

For each virtual group, construct the corresponding suffix subtrees
in parallel:

ERA

Horizontal partitioning

For each virtual group, construct the corresponding suffix subtrees
in parallel:

Q Locate and store all positions of S-prefixes for the virtual
group. Each of located S-prefixes is to become a leaf in the
working suffix subtree.

ERA

Horizontal partitioning

For each virtual group, construct the corresponding suffix subtrees
in parallel:

Q Locate and store all positions of S-prefixes for the virtual
group. Each of located S-prefixes is to become a leaf in the
working suffix subtree.

Q Calculate the optimal buffer length range

o Note: The name Elastic Range.

ERA

Horizontal partitioning

For each virtual group, construct the corresponding suffix subtrees
in parallel:

Q Locate and store all positions of S-prefixes for the virtual
group. Each of located S-prefixes is to become a leaf in the
working suffix subtree.

Q Calculate the optimal buffer length range

o Note: The name Elastic Range.

© Read the next range characters for each S-prefix occurrence.

ERA

Horizontal partitioning

For each virtual group, construct the corresponding suffix subtrees
in parallel:

Q Locate and store all positions of S-prefixes for the virtual
group. Each of located S-prefixes is to become a leaf in the
working suffix subtree.

Q Calculate the optimal buffer length range

o Note: The name Elastic Range.
© Read the next range characters for each S-prefix occurrence.

@ Do in-memory sorting of read text, remember branching
information (=LCP) and the original position (=SA).

ERA

Horizontal partitioning

For each virtual group, construct the corresponding suffix subtrees
in parallel:

Q Locate and store all positions of S-prefixes for the virtual
group. Each of located S-prefixes is to become a leaf in the
working suffix subtree.

Q Calculate the optimal buffer length range

o Note: The name Elastic Range.

© Read the next range characters for each S-prefix occurrence.

@ Do in-memory sorting of read text, remember branching
information (=LCP) and the original position (=SA).

@ Until all the read buffers are unique, goto step 2.

o In the next step: While less leafs are orphans, range increases,
frequency drops.

ERA

Horizontal partitioning

For each virtual group, construct the corresponding suffix subtrees
in parallel:

Q Locate and store all positions of S-prefixes for the virtual
group. Each of located S-prefixes is to become a leaf in the
working suffix subtree.

Q Calculate the optimal buffer length range

o Note: The name Elastic Range.

© Read the next range characters for each S-prefix occurrence.

@ Do in-memory sorting of read text, remember branching
information (=LCP) and the original position (=SA).

@ Until all the read buffers are unique, goto step 2.

o In the next step: While less leafs are orphans, range increases,
frequency drops.

Q Construct suffix subtree in D-F manner using SA and LCP.

Formal analysis
°

Model of computation

" Arge, Goodrich, Nelson, Sitchinava 2008

Formal analysis
°

Model of computation

Parallel External Memory model (PEM):”

o Shared memory model,
@ 2-level memory hierarchy: - Memory
- aches
o p .processors, each with) (;)
private cache of size M 8 O
o0 O LJ M 00 O LJ
bytes. e e o |Bblocks oo oo oo
1 o 00 o0 e O o o
o parallel memory transfers 0 eee o0 o
. . L 0 O
in blocks of size B bytes. e o * sees
- e AR
@ Performance metrics: LY SRR
- : H o o o o
o parallel time, : — s e e e
o parallel block transfers CPU, . s ses
(cache complexity). s s e oo oo oo

@ Concurrent reads assumed.

" Arge, Goodrich, Nelson, Sitchinava 2008

Formal analysis
°

Assumption

If worst-case input text for ERA is skewed:

T = AAA...

Formal analysis
°

Assumption

If worst-case input text for ERA is skewed:
T = AAA...

then

o vertical partitioning requires N scans = O(N?) comparisons,

. N2
o cache complexity O (§>

Formal analysis
°

Assumption

If worst-case input text for ERA is skewed:
T = AAA...

then
o vertical partitioning requires N scans = O(N?) comparisons,

. N2
o cache complexity O (§>

Our assumption:

o Input text is random (viable for a single human genome,
proteins).
1

o At any place the probability of each character to occur is .

o Goal: Calculate expected time and cache complexity.

Formal analysis
©00000000

Algorithm 2: VerticalPartitioning

Input: Input string S, alphabet X, 15t level memory size M
Output: Set of VirtualTrees

1 VirtualTrees <)

2 P+

3 P’ + {V symbol s € ¥ generate a S-prefix 7; € P'}

4 repeat

5 scan input string S

6 count in S the frequency f;; of every S-prefix m; € P’
7 forall the ; € P’ do

8 if 0 < f;; <M then add 7; to P

9 else forall the symbol s € ¥ do add ;s to P’

10 remove 7; from P’

11 until P’ =
12 sort P in descending f;, order

13 repeat

14 G+ 0

15 add P.head to G and remove the item from P

16 curr <— next item in P

17 while NOT end of P do

18 if feurr + SUM,c6(f,;) < M then

19 L add curr to G and remove the item from P
20 curr < next item in P

21 add G to VirtualTrees

22 until P =)
23 return VirtualTrees

Formal analysis
0®0000000

Analysis: Vertical partitioning

Formal analysis
0®0000000

Analysis: Vertical partitioning

Expected behavior:
O Extension of S-prefixes:
o Initially o S-prefixes of frequency f, = ¥ each.

o

f. divided by o each iteration until 7, < M.
Total log, N — log, M = log, % iterations.
Finally % unique S-prefixes with frequency g < fpr <M.

®© © o

Formal analysis
0®0000000

Analysis: Vertical partitioning

Expected behavior:
O Extension of S-prefixes:
o Initially o S-prefixes of frequency f, = ¥ each.

o

f. divided by o each iteration until 7, < M.
Total log, N — log, M = log, % iterations.
Finally % unique S-prefixes with frequency g < fpr <M.

®© © o

Q@ Atomic sorting the frequencies using one of the
comparison-based sorting algorithms.

Formal analysis
0®0000000

Analysis: Vertical partitioning

Expected behavior:
O Extension of S-prefixes:
o Initially o S-prefixes of frequency f, = g each.
f. divided by o each iteration until 7, < M.
Total log, N — log, M = log, % iterations.
Finally % unique S-prefixes with frequency g < fpr <M.

®© © o

Q@ Atomic sorting the frequencies using one of the
comparison-based sorting algorithms.
@ Virtual trees construction (bin packing problem):

o At least 1 and at most o S-prefixes are packed each iteration.
o External loop iterated between % and % times.

Formal analysis
00®000000

Analysis: Vertical partitioning — Time

Formal analysis
00®000000

Analysis: Vertical partitioning — Time

Q Extension of S-prefixes
log,, %) 2(N_M
Zl (scan(n) + o'*1) = log,, & - scan(n) + UM(.O_:M) =
=
O (Nlog, % + %)

Formal analysis
00®000000

Analysis: Vertical partitioning — Time

Q Extension of S-prefixes

log,, % '
S (can(o) + 0741) =g, 3 - scon(n) + 40—
i=1
O (Nlog, 5 + %)
@ Sorting
O (1118 1)

Formal analysis
00®000000

Analysis: Vertical partitioning — Time

Q Extension of S-prefixes

log, N
?j:lM (scan(n) + o'*1) = log,, & - scan(n) + U,;(.,::%) =
0 (N log,, % + %)
Q Sorting
O (1 'e m)
© Virtual trees construction
o((#))

Formal analysis
00®000000

Analysis: Vertical partitioning — Time

Q Extension of S-prefixes

N

|0ig:§:1M (scan(n) + o'*1) = log,, & - scan(n) + 0:4(.,::%) =
0 (N log,, % + %)

Q Sorting
O (1 'e m)

© Virtual trees construction
o((#))

Overall:
o lfo<M: O (Nloga % + (%)2>

o If o > M: O(Nloga%+%+%|g%+(%)2)

Formal analysis
[ele]eY Yololelele]

Analysis: Vertical partitioning — /O

Q Extension of S-prefixes
o Line 6: scan(N) for reading

Formal analysis
[ele]eY Yololelele]

Analysis: Vertical partitioning — /O

Q Extension of S-prefixes
o Line 6: scan(N) for reading
1= 0%
If |P| < M: no |/Os for writing f
If [P > M: \TN{| = MWZ I/Os for storing f,.

Formal analysis
[ele]eY Yololelele]

Analysis: Vertical partitioning — /O

Q Extension of S-prefixes

o Line 6: scan(N) for reading
Pl-0()
If |P| < M: no |/Os for writing f
If [P > M: \TN{| = MWZ I/Os for storing f,.

o Lines 7-10:

If |[P'] < M: no1/Os

If [P'| > M: B = N 1/0s

Formal analysis
[ele]eY Yololelele]

Analysis: Vertical partitioning — /O

Q Extension of S-prefixes
o Line 6: scan(N) for reading
1= 0%
If |P| < M: no |/Os for writing f
If [P > M: ‘—’Vfl = MWZ I/Os for storing f,.
o Lines 7-10:
If |[P'] < M: no1/Os
If |P'| > M: 2 = N 1/0s
@ Sorting |P| = ¥ elements:
If M > +/N: no I/Os
If M < VN: O(515 lo %%) 1/Os

Formal analysis
[ele]eY Yololelele]

Analysis: Vertical partitioning — /O

Q Extension of S-prefixes
o Line 6: scan(N) for reading
Pl=0(%)
If |P| < M: no |/Os for writing f
If [P > M: ‘—’Vfl = MWZ I/Os for storing f,.
o Lines 7-10:
If |[P'] < M: no1/Os
If |P'| > M: 2 = N 1/0s
@ Sorting |P| = ¥ elements:
If M > +/N: no I/Os

N N_
If M < VN: O(55 log gy wg) 1/0s
@ Virtual tree G < I\/I:
M > /N: no I/Os
M < V/N: 1El = N 1/0s

Formal analysis
[eleleleY Yolelele]

Analysis: Vertical partitioning — /O contd.

Overall:

o If M > /N:
O (5 log,)
o If M < V/N:
0] (Ioga% . (%—i—l\/lz) +%Iog% %—i— (%)2)

Formal analysis
000008000

Algorithm 3: HorizontalPartitioning.SubTreePrepare
Input: Input string S, S-prefix 7
Output: Arrays SA and LCP corresponding suffix sub-tree 7,

1 SA contains the locations of S-prefix 7 in string S

2 LCP « {}

3

4

5 Buf + {}

6 P« {0,1,...,|L|—1}

7 start + |x|

8 while there exists an undefined Buf[i], 1 < i < |SA| — 1 do
9 range < GetRangeOfSymbols

10 for i 0 to |SA| — 1 do

1 if ISA[i] # done then
12 Buf[ISA[i]] < ReadRange(S, SA[ISA[i]] + start, range)
// ReadRange(S,a,b) reads b symbols of S starting at
position a

13 for every active area AA do

14 Reorder the elements of Buf, P and SA in AA so that Buf
is lexicographically sorted. In the process maintain the
index ISA

15 If two or more elements {ay, ..., a;} € AA,2 < t, exist such
that Buf[a1] = ... = Buf[a;] introduce for them a new

L active area

16 for all i such that Buf[i] is not defined, 1 < i < |SA| — 1 do

17 cp is the common prefix of Buf[i — 1] and Buf[i]

18 if [cp| < range then

19 Buf[i] « (Buf[i — 1][|cp|], Buf[i][|cpl], start + |cp|)

20 if Buf[i — 1] is defined or i = 1 then

21 L Mark ISA[P[i — 1]] and A[i — 1] as done

22 if Buf[i+ 1] is defined or i = [SA] — 1 then

23 Mark ISA[P[i]] and Ali] as done // last element of

an active area

24 start < start + range

25 return (SA,LCP)

Formal analysis
000000®00

Analysis: Horizontal partitioning

Formal analysis
000000®00

Analysis: Horizontal partitioning

Expected behaviour:

Formal analysis
000000®00

Analysis: Horizontal partitioning

Expected behaviour:

@ Define n the number of unfinished branches, then
n-range = O(M).

Formal analysis
000000®00

Analysis: Horizontal partitioning

Expected behaviour:

@ Define n the number of unfinished branches, then
n-range = O(M).

o Intuitively n decreases and range increases during execution of
lines 8-24.

Formal analysis
000000®00

Analysis: Horizontal partitioning

Expected behaviour:

@ Define n the number of unfinished branches, then
n-range = O(M).

o Intuitively n decreases and range increases during execution of
lines 8-24.

o For length k, there can be at most o* unique strings. For
random text and step 1 < i < k, strings are non-unique until
k is reached.

Formal analysis
000000®00

Analysis: Horizontal partitioning

Expected behaviour:

@ Define n the number of unfinished branches, then
n-range = O(M).

o Intuitively n decreases and range increases during execution of
lines 8-24.

o For length k, there can be at most o* unique strings. For
random text and step 1 < j < k, strings are non-unique until
k is reached.

o If O(M) random strings need to be processed, then lines 8-24
is iterated O(log, M) times. The big-oh constant depends on
range.

Formal analysis
000000080

Analysis: Horizontal partitioning — Time

Formal analysis
000000080

Analysis: Horizontal partitioning — Time

Each iteration:

@ Lines 10-12 required n time to fill the buffers (constant time
read).

Formal analysis
000000080

Analysis: Horizontal partitioning — Time

Each iteration:

@ Lines 10-12 required n time to fill the buffers (constant time
read).

@ String sorting requires O(n - range) time since the average
distinguising prefix size equals O(range).

Formal analysis
000000080

Analysis: Horizontal partitioning — Time

Each iteration:
@ Lines 10-12 required n time to fill the buffers (constant time
read).

@ String sorting requires O(n - range) time since the average
distinguising prefix size equals O(range).

@ Lines 16-23 require O(n - range) time in the worst case.

Formal analysis
000000080

Analysis: Horizontal partitioning — Time

Each iteration:

@ Lines 10-12 required n time to fill the buffers (constant time
read).

@ String sorting requires O(n - range) time since the average
distinguising prefix size equals O(range).

@ Lines 16-23 require O(n - range) time in the worst case.

Overall: Assuming p processors equally balanced after processing
O(N/M) virtual groups require

0 (ﬂM) -0 (ﬂ log,, M)
M p p

Formal analysis
00000000e

Analysis: Horizontal partitioning — 1/0O

Formal analysis
00000000e

Analysis: Horizontal partitioning — 1/0O

@ Cache misses occur in lines 10-12 only:

Formal analysis
00000000e

Analysis: Horizontal partitioning — 1/0O

@ Cache misses occur in lines 10-12 only:
o Ifn> %, then O (%) 1/Os.

Formal analysis
00000000e

Analysis: Horizontal partitioning — 1/0O

@ Cache misses occur in lines 10-12 only:

o Ifn> %, then O (%) 1/Os.
o Else: O(n) 1/0Os

Formal analysis
00000000e

Analysis: Horizontal partitioning — 1/0O

@ Cache misses occur in lines 10-12 only:

o Ifn> %, then O (%) 1/Os.
o Else: O(n) 1/0Os

@ When does the change from n > Y to n < ¥ occur?
g B B

Formal analysis
00000000e

Analysis: Horizontal partitioning — 1/0O

@ Cache misses occur in lines 10-12 only:
o Ifn> %, then O (%) 1/Os.
o Else: O(n) 1/0s
Q When does the change from n > % to n < % occur?

© Assuming uniformly random text, n = ¢ - M for some constant
c all the time! (all branches are open until the last iteration)

Formal analysis
00000000e

Analysis: Horizontal partitioning — 1/0O

@ Cache misses occur in lines 10-12 only:
o Ifn> %, then O (%) 1/Os.
o Else: O(n) 1/0s
Q When does the change from n > % to n < % occur?

© Assuming uniformly random text, n = ¢ - M for some constant
c all the time! (all branches are open until the last iteration)

© Suffix subtree construction from SA and LCP requires a single
scan(N) 1/Os only and is omitted.

Formal analysis
00000000e

Analysis: Horizontal partitioning — 1/0O

@ Cache misses occur in lines 10-12 only:
o Ifn> %, then O (%) 1/Os.
o Else: O(n) 1/0s
Q When does the change from n > % to n < % occur?

© Assuming uniformly random text, n = ¢ - M for some constant
c all the time! (all branches are open until the last iteration)

© Suffix subtree construction from SA and LCP requires a single
scan(N) 1/Os only and is omitted.

@ 1/0 complexity for horizontal partitioning is thus

) (min (M, g) - log,, M)

Formal analysis
.

Formal analysis
.

Wrap-up

Parallel time complexity of ERA (assuming o < M):

N N\ N
O(Nloggﬁ+<ﬂ> —i—;loggM)

Parallel cache complexity of ERA (assuming M > v/N):

; N
0 <ﬂ log, ﬂ n min (I\/I, E) -Iog(,M)
7 p

B

Empirical evaluation
°

Empirical evaluation

Empirical evaluation
°

Empirical evaluation

Testing environment:
@ 2x 16-core AMD Opteron 6272 ©2,100 MHz
128 GiB RAM
o Seagate Baracuda 250 GB, 7,200 RPM, 32 MiB cache, SATA
@ Ubuntu server 12.04, Linux kernel 3.11.0
o ext4 file system, deadline |/O scheduler

(]

ERA parameters:
@ Memory size per core: 2 GiB
o Input text: Human genome HG18.txt, 2.8 Gbp

ERA modification: Call £sync() after writing each file.
ERA output:

o Total suffix tree size: 77.3 GB stored in 187 files
® Tiop size: 10.2 KB

Empirical evaluation
°

Results — 1

ERA execution time per # of CPUs

time [s]
e

 of proc
ERA speedup per # of CPUs

L -

o
. v efciency per # of Cous
o
zo e
o
.
o 0 5 5| 0 5

of proc.

Empirical evaluation
°

Results — 1

ERA execution time per # of CPUs

time [s]
e

 of proc
ERA speedup per # of CPUs

of proc
ERA efficiency per # of CPUs.

The time increases as we increase the number of cores.

Empirical evaluation
®000

Results — 2

So what is the machine doing?

Empirical evaluation
®000

Results — 2

So what is the machine doing?
string cpy Parsing and copying the string.
vertpart Vertical partitioning.
cntl, ent®* Horizontal partitioning: determining locations of
S-prefix in virtual trees of size 1 or > 1.
filbuf Horizontal partitioning: reading range characters
from S-prefix locations.
sort Horizontal partitioning: string sorting, implicit LCP,
SA construction.

write Horizontal partitioning: extraction from LCP and SA
to suffix tree, write to disk.

Empirical evaluation
0®00

Results — 2 contd.

parallel10_devnullprobability CPU times poo.

3000 4000 5000 0
878°bs. s=p!
i
5
(
4
£
H
2
p
90200 400 600 80010001200140016001800 0 200 400 600 800 1000 1200 T 0

200 400 600 800 1000 1200 1400
S bi}

p = 20, t={%i6s, s=poo =24, 5o, s=po0 8, t= {55, s=poo
string cpy=65s. Strihg cpy=67s.
| 178s [2]
cntr=3045s LY
s || £y
ddis| H
rite=18203s 10

200" 400 600 8001000 1200 T
e ls]

200 400 600 800 1000 1200 1
time (5]

200 400 600 B00 1000 1200 1
time (5]

00 400 60D 800 1000 1200 T
time (5]

Empirical evaluation
feeY Yol

Results — 2 contd.

parallel10_devnullprobability iostat p00

1,t=5972.05 P =2, t=3463.05 p=4,t=2033.05
MB/s MB/s MBS
— avg:047 " avg: 074 — avg: 131
WMBS l WMB/s l
T avg:13.09 T avg:22.36
. awaitfes] |} . awaitfes] |
avg: 17,51 avg: 26.77
avg. queue sz avg. queve sz
Toavei17.94 | i 0,73 ||
50l 4
1000 2000 3000 4000 5000 6000 500 1000 1500 2000 2500 3000 3500 500 1000 1500 2000 2500 3000
P =6,t=1678.05 P =8 t=1398.05 p =12, t=1303.0s p = 16, t=1243.05
B/ B/ MB/s MBS
— avgi 162 — avg:18 — avg:225 — avg:226
WMBJS l wMB/s l wMB/s l wB/s 1
T avg: 46.48 T avg: 5531 | T avg;59.11 T avg:6223
| . awaitlesl | Jif L await [cs] Wl . awaitics) 1 b L awaitfes] L]
! avg: 47.66 i avg: 55.35) RN avg1 65,77 K avg: 65,09
avg. queue sz [avg. queue sz ‘ P a‘&‘ ueu ! avg. quele sz
100 g 69.74] h 7, averaa.do | i ave: 10025 |1 b o avg 1082 |1
T e
HH bt ™
50l ' i ¥
ol ” ‘
700 400 600 8001000 0200 460 600 500 10001200 1400 700 400 600 00 1000 1200 1400 760 400 600 800 1000 1200 1400
P = 20,t=1316.0s p = 24,t=1255.05 p = 28, t=1295.05 p = 32, t=1306.05
B/ MBls MBS MBS
— avg:224 — avg:232 — avg:197 — avg:231
l 1 WMB/s i wMB/s l whB/s
e avg: 6107 ~|avg: 59.63 7 avg: 60.06
M i il Lo awaitiies) 1 | L await {cs)
LY U wg: 66.98 / avg: 64.75
|
‘ sz |,3v. Quieue sz r 8. queut
H 73 | o 2ves 102,55, | ! -101.1¢
200 400 600 800 1000 1200 1400 200 400 600 800 1000 1200 1400 200400 600 800 1000 1200 1400 00400 600 800 1000 1200 1400

Empirical evaluation
oooe

Results — 2 contd.

parallel10_devnullprobability mpstat p00

p=2,t=3463.05
-—user-7 61%
= system

= o 155

4,t=2033.0s

. user=72. 17%

1000 2000 3000 4000 5000 6000 500 1000 1500 2000 2500 3000 3500 500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500

p =16, t=1243.0s

=8, t=1398.0s p =12, t=1303.05

200 400 600 800100012001400160a 200 400 600 800 1000 1200 1400 200 400 600 800 1000 1200 1400 200 400 600 800 1000 1200 1400

200 400 600 800 1000 1200 1400 400 600 800 1000 1200 1400 200 400 600 800 1000 1200 1400 200 400 600 800 1000 1200 1400

Empirical evaluation
000

Hypotheis 1

Observation 1: The majority of time is spent writing the final
result to the disk.

Empirical evaluation
000

Hypotheis 1

Observation 1: The majority of time is spent writing the final
result to the disk.

Hypothesis 1: Problem is the disk performance, so replace HDD
with SSD.

Empirical evaluation
oceo

Results — 3

parallel10_devnulprobability_ssd CPU times po0

o5

i]ii 7
Ll
u il it
B] [,.‘.;lk
H o W gl i
* - |\|;lh‘ﬂ : b

200 400 600 800 1000 1200 1 400 600 800 1000 1200
20, t4856%bs, s=p00 955

tring| cpy=48s
rtgait=171s
151 t1
1o
3 |
£19
B rt 35
g s
s
P

100,200 300 400 00 600 700 600 3 0 300 400 50 00 600 %0 100 200 300 400 500 600 700 05 500 0 100 200 300 400 500 600 700 800
e ls] time (5] time (5] time (5]

Empirical evaluation
[ole }

Hypotheis 2

Observation 2: The amount of time for writting decreased, but as
the number of cores grows, it is still substantial.

Empirical evaluation
[ole }

Hypotheis 2

Observation 2: The amount of time for writting decreased, but as
the number of cores grows, it is still substantial.

Hypothesis 2: There it is still a problem with a disk performance
and consequently further speed-up disk by writting to /dev/null.

Empirical evaluation
@00

Results — 4

times per # o poc.,devinul prob. wise

robabilty = 0.0

probabily = 0. probabilty = 0. probabilty = 0.
om0
s000
 aono = z
£ f ¥
2000
~ N
1000 —— e P L LY - e
R S R TR T 3 T 5 TR i 5 3
orobBI% 0.4 probBfYS o. probsIRYE prob3B% 0.7
sono
]]]
O SN S S G Py e by
R S R R T 5 s 3 s s 3
" orpoe ol ol Votoroe
probB8HRY o probBif% o prob38ifys 1
6000
5000
5 dono 5 z
£ g :
2000
T N S A S S e S
ERNE R T 5 T 3 T LN T ()
Worproc Wotproc. W otroc

Empirical evaluation
oeo

Results — 4 contd.

parallel10_devnullprobability CPU times p10

1000 2000 3000 4000 5000

il

600 800 1000 12 600 To0 100 200 300 400 500 600 700 800 O E
4%bs, s=p10 864bs, s=p10 28, t9868%s,

100 200 300 400
time (5]

100 200 300 400 500 600 7 700 200 300 400
time (5] time (5]

0 T00 200 300 400 500 600 700
time (5]

Empirical evaluation
ooe

Hypotheis 3

Observation 3: Things are getting better, but there is still an
increase in time when the number of cores is increased.

Empirical evaluation
ooe

Hypotheis 3

Observation 3: Things are getting better, but there is still an
increase in time when the number of cores is increased.

Hypothesis 3: 77

Check in more detail what the processes are doing.

Empirical evaluation
[Jelele)

Results — 5 (p = 16)

parallel10_devnullprobabilty CPU times per CPU, p00

t=1243.0 1200

string cpy=67s
vertpart=166s

Empirical evaluation
0®00

Results — 5 (p = 16), strace

parallelL3_strace CPU times per CPU, p00

p = 16, t=14680 1400

- string cpy=795
- vertpart=177s

sort=2259s
write=71245

4

Empirical evaluation
ocoe

Results — 5 (p = 32)

parallel10_devnullprobabilty CPU times per CPU, p00
200 00 o= 32, t=1306.0 800 1000 1200

string cpy=73s

Empirical evaluation
ocooe

Results — 5 (p = 32), strace

parallelL3_strace CPU times per CPU, p00

2, t=1432.0 800 1000 1200 1400

string cpy=82s

Conclusion

Conclusion

Conclusion

Conclusion

o Huge gap between the theoretical time and /O asymptotically
tight algorithms and the practical ones.

Conclusion

Conclusion

o Huge gap between the theoretical time and /O asymptotically
tight algorithms and the practical ones.

o ERA despite being practically the fastest algorithm is not
theoretically tight even for random input strings with
uniform substring distribution.

Conclusion

Conclusion

o Huge gap between the theoretical time and /O asymptotically
tight algorithms and the practical ones.

o ERA despite being practically the fastest algorithm is not
theoretically tight even for random input strings with
uniform substring distribution.

Open challenges:

Conclusion

Conclusion

o Huge gap between the theoretical time and /O asymptotically
tight algorithms and the practical ones.

o ERA despite being practically the fastest algorithm is not
theoretically tight even for random input strings with
uniform substring distribution.

Open challenges:

@ Analyse ERA bottlenecks for further improvements (see if they
match the critical terms in time and 1/O complexities).

Conclusion

Conclusion

o Huge gap between the theoretical time and /O asymptotically
tight algorithms and the practical ones.

o ERA despite being practically the fastest algorithm is not
theoretically tight even for random input strings with
uniform substring distribution.

Open challenges:

@ Analyse ERA bottlenecks for further improvements (see if they
match the critical terms in time and 1/O complexities).

@ Shall we choose some other basic technique for the
implementation of a practical algorithm?

Conclusion

Conclusion

o Huge gap between the theoretical time and /O asymptotically
tight algorithms and the practical ones.

o ERA despite being practically the fastest algorithm is not
theoretically tight even for random input strings with
uniform substring distribution.

Open challenges:
@ Analyse ERA bottlenecks for further improvements (see if they
match the critical terms in time and 1/O complexities).
@ Shall we choose some other basic technique for the
implementation of a practical algorithm?

@ Design a theoretically tight yet practically competitive parallel
algorithm for suffix tree construction.

Conclusion

Thank you.

Matevz Jekovec
matevz.jekovec®fri.uni-lj.si

University of Ljubljana
Faculty of Computer and

Information Science

Andrej Brodnik LUS Y%G

andrej.brodnik@fri.uni-lj.si Laboratori) za vseprisotre sisteme

Laboratory for Ubiquitous SYstems

http://lusy.fri.uni-lj.si

Conclusion

Extra — List of all experiments

Shown at the presentation:
o Execution time for different p, speed-up, efficiency.
o CPU times, iostat and mpstat per different phases for
p=1{1,2,3,4,6,8,12,16,20,24,27,32}.
iostat output for various p.
mpstat output for various p.
Work per core for single execution for p = 32.

Using strace, fetching read, write, 1seek syscalls.

Conclusion

Extra — List of all experiments contd.

Test scenarios:
o Original code + added fsync (), various # of cores, various
mem. size per core.
o Various string buffer sizes BUF_TYPE= {8, 16, 32, 64} bit.
o Integration of Multikey cached quicksort
(Rantala-Bentley-Sedgewick) instead of GNU gsort.
@ Maximum limit of simultaneously opened files for writing
F=1{1,2,3,4,56,12,16}.
@ Output to /dev/null with probability Pr =[0,0.1...1].
o Separated disk for writing and reading.
@ SSD for reading and/or writing.
Different file system schedulers: noop, default, cfq.

(+]

Different file system max queue length.
Output to raw device without file system.

e 6 o

Execution on 12x Raspberry 7 with shared NFS storage.

	Introduction
	Text indexing problem
	Suffix tree construction times
	Suffix tree construction lower bounds

	Design goals
	Challenges

	ERA
	Overview
	Vertical partitioning
	Horizontal partitioning

	Formal analysis
	Model of computation
	Assumptions
	Analysis
	Wrapup

	Empirical evaluation
	Testing environment
	Results 1
	Results 2
	Results 3
	Results 4
	Results 5

	Conclusion

