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Matevž Jekovec, Andrej Brodnik

University of Ljubljana
Faculty of Computer and Information Science

KAUST, March 1-5, 2014



Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Text indexing problem

Problem statement

Given unstructured input string S consisting of N characters from
alphabet Σ of size σ build an index such that for the pattern P we:

determine whether P occurs in S in time O(P),

find all occurrences of P in S in time O(P + occ),

find the longest common prefix (LCP) of P and any suffix of
S in time O(LCP(P,S)).

Solution

Suffix tree and suffix array (SA) with LCP information are
fundamental data structures for indexing unstructured text.
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Suffix tree — Example

1   $
2   A$
3   ABRA$
4   ABRAKADABRA$
5   ADABRA$
6   AKADABRA$
7   BRA$
8   BRAKADABRA$
9   DABRA$
10 KADABRA
11 RA$
12 RAKADABRA$
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Suffix tree construction algorithms

Theoretical:

W (’73), McC (’78) U (’95) F-C et al. (’00)

Work w.c. O(N) O(N) O(N lg N)

Online No Yes Yes1

I/O efficiency String String Result+String

Unbounded Σ No No Yes

Parallel No No PDAM

Practical:

Semi-disk-based Out-of-core
TDD TRLS. B2ST WF ERA PCF
(’04) (’07) (’09) (’09) (’11) (’13)

Work w.c. O(N2) O(N2) O(N2) O(N2) O(N2) O(
√

pN)

I/O eff. R. R. R.+S. R.+S. R.+S. R.+S.

Unbnd. Σ No No No No No No

Parallel No No No Yes Yes Yes

1Bedathur and Haritsa (2004)
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Huge gap between the theoretical and
practical results!
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Suffix tree construction lower bounds

Sequential:
bounded Σ unbounded Σ

Time Ω(Sort(N)) Ω(Sort(N))

I/Os2 Ω(Sort(N)) Ω(Sort(N))

Space3 Ω(N lg σ) bits Ω(N lg σ) bits

Parallel on p processing units:
bounded Σ unbounded Σ

Parallel time Ω
(
N
p

)
Ω
(
N
p log N

)
Parallel I/Os4 Ω

(
N
pB

)
Ω
(

N
pB logM

B

N
B

)
Space3 Ω(N lg σ) bits Ω(N lg σ) bits

2EM model
3Uncompressed index in word RAM
4PEM model
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Challenges

Theoretical algorithms: Lack of locality of reference.
Goal: Use scans only both for input text and the resulting suffix
tree!
Counterintuitive: Input text is arbitrary, suffix tree is
lexicographically ordered.
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Challenges contd.

I/O efficient solution (eg. WF-ERA, B2ST-PCF):

1 Scan part of the input text from the disk,

2 do in-memory sorting (=random accesses in fast memory
only!),

3 construct the corresponding part of the suffix tree,

4 glue parts together,

5 and contiguously write it to disk.
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ERA — Elastic Range5

The fastest practical, parallel suffix tree construction
algorithm to date.

Time complexity: O(N2) w.c. — for extremely skewed text!

Yet, it’s fast in practice: Constructs and stores the human
genome’s suffix tree in 20 minutes on 16-core desktop PC
with HDD or 13 minutes with SSD!

5Mansour, Allam, Skiadopoulos, Kalnis (2011)
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ERA contd.

ERA constructs the suffix tree in two steps:

1 The vertical partitioning step determines 1) the suffix
subtrees just fitting into the main memory M and 2)
constructs the suffix tree top.

2 The horizontal partitioning step builds the actual suffix
subtrees.
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ERA contd.

Algorithm 1: ERA

Input: String S , Alphabet Σ, Processors P, Private cache size M
Output: Suffix tree T

1 Ttop,G ← VerticalPartitioning(S ,Σ,M)
2 T ← Ttop
3 while |G | > 0 do
4 for p ∈ P do in parallel
5 if |G | > 0 then
6 π ← G .pop()
7 Tπ ← HorizontalPartitioning(S ,Σ, π)
8 Link(T , Tπ)

9 return T
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Vertical partitioning

Define S-prefix π as the prefix of the suffixes in the text.

Idea: The S-prefix frequency fπ equals # of leaves in the suffix
subtree corresponding to π. Assume 2fπ is the w. c. subtree size.
Vertical partitioning steps:

1 Scan the text and obtain the characters frequency fπ : π ∈ Σ.

We counted all S-prefixes of length 1.

2 For each π : fπ > M, expand S-prefix with the right character
and count the frequency of obtained S-prefixes (now length 2).

3 Repeat step two for S-prefixes of length 3, 4..., until all Tπ just
fit into the memory M.

4 Extra: To optimally fill the main memory, combine the
S-prefixes into virtual groups G , fitting into the main memory
as tight as possible.

Use First-Fit Decreasing heuristic for bin packing problem6.

6Yue (1991)
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Vertical partitioning — Example

π = ACC
Frequency fACC = 12

TAACCCTA
ACCCTAAC
CCTAACCC
TAACCCTA
ACCCTAAC
CCTAACCC
TAACCCTA
ACCCTAAC
CCTAACCC
TAACCCTA
ACCCTAAC
CCTAACCC
TAAC

101:0

$

2:1

A

1:4

TAAC

4:1

C

3:2

AC

4:1

C

101:0

$

5:6

CCTAAC

$ CCTAAC

101:0

$

5:6

CCTAAC

$ CCTAAC

101:0

$

5:6

CCTAAC

101:0

$

11:6

CCTAAC

$ CCTAAC

101:0

$

7:4

TAAC

5:1

C
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$
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$ CCTAAC

7:4

TAAC

6:5

CTAAC

$ CCTAAC $ CCTAAC
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Horizontal partitioning

For each virtual group, construct the corresponding suffix subtrees
in parallel:

1 Locate and store all positions of S-prefixes for the virtual
group. Each of located S-prefixes is to become a leaf in the
working suffix subtree.

2 Calculate the optimal buffer length range

Note: The name Elastic Range.

3 Read the next range characters for each S-prefix occurrence.

4 Do in-memory sorting of read text, remember branching
information (=LCP) and the original position (=SA).

5 Until all the read buffers are unique, goto step 2.

In the next step: While less leafs are orphans, range increases,
frequency drops.

6 Construct suffix subtree in D-F manner using SA and LCP.
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Model of computation

Parallel External Memory model (PEM):7

Shared memory model,

2-level memory hierarchy:

p processors, each with
private cache of size M
bytes.
parallel memory transfers
in blocks of size B bytes.

Performance metrics:

parallel time,
parallel block transfers
(cache complexity).

Concurrent reads assumed.

B

Memory
(n)

CPU1

Caches
(M)
B

blocksM
B

CPU2

CPUp

7Arge, Goodrich, Nelson, Sitchinava 2008
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Assumption

If worst-case input text for ERA is skewed:

T = AAA...

then

vertical partitioning requires N scans = O(N2) comparisons,

cache complexity O
(
N2

B

)
.

Our assumption:

Input text is random (viable for a single human genome,
proteins).

At any place the probability of each character to occur is 1
σ .

Goal: Calculate expected time and cache complexity.
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Algorithm 2: VerticalPartitioning

Input: Input string S , alphabet Σ, 1st level memory size M
Output: Set of VirtualTrees

1 VirtualTrees ← ∅
2 P ← ∅
3 P ′ ← {∀ symbol s ∈ Σ generate a S-prefix πi ∈ P ′}
4 repeat
5 scan input string S
6 count in S the frequency fπi of every S-prefix πi ∈ P ′

7 forall the πi ∈ P ′ do
8 if 0 < fπi ≤ M then add πi to P
9 else forall the symbol s ∈ Σ do add πi s to P ′

10 remove πi from P ′

11 until P ′ = ∅
12 sort P in descending fπi order
13 repeat
14 G ← ∅
15 add P.head to G and remove the item from P
16 curr ← next item in P
17 while NOT end of P do
18 if fcurr + SUMγi∈G (fγi ) ≤ M then
19 add curr to G and remove the item from P

20 curr ← next item in P

21 add G to VirtualTrees

22 until P = ∅
23 return VirtualTrees
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Analysis: Vertical partitioning

Expected behavior:
1 Extension of S-prefixes:

Initially σ S-prefixes of frequency fπ = N
σ each.

fπ divided by σ each iteration until fπ < M.
Total logσ N − logσ M = logσ

N
M iterations.

Finally N
M unique S-prefixes with frequency M

σ < fπ ≤ M.

2 Atomic sorting the frequencies using one of the
comparison-based sorting algorithms.

3 Virtual trees construction (bin packing problem):

At least 1 and at most σ S-prefixes are packed each iteration.
External loop iterated between N

σM and N
M times.
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Analysis: Vertical partitioning — Time

1 Extension of S-prefixes
logσ

N
M∑

i=1

(
scan(n) + σi+1

)
= logσ

N
M · scan(n) + σ2(N−M)

M·σ−M =

O
(
N logσ

N
M + σN

M

)
2 Sorting

O
(
N
M lg N

M

)
3 Virtual trees construction

O
((

N
M

)2)
Overall:

If σ < M: O
(

N logσ
N
M +

(
N
M

)2)
If σ ≥ M: O

(
N logσ

N
M + σN

M + N
M lg N

M +
(
N
M

)2)
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Analysis: Vertical partitioning — I/O

1 Extension of S-prefixes

Line 6: scan(N) for reading

|P ′| = O
(
N
M

)
If |P ′| ≤ M: no I/Os for writing fπ
If |P ′| > M: M

|P′| = M2

N I/Os for storing fπ
Lines 7-10:
If |P ′| ≤ M: no I/Os

If |P ′| > M: P′

B = N
M·B I/Os

2 Sorting |P| = N
M elements:

If M ≥
√

N: no I/Os
If M <

√
N: O( N

M·B logM
B

N
M·B ) I/Os

3 Virtual tree G ≤ M:
M ≥

√
N: no I/Os

M <
√

N: |P|B = N
M·B I/Os
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Analysis: Vertical partitioning — I/O contd.

Overall:

If M ≥
√

N:
O
(
N
B logσ

N
M

)
If M <

√
N:

O
(

logσ
N
M ·
(
N
B + M2

)
+ N

M·B logM
B

N
M·B +

(
N

M·B
)2)
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Algorithm 3: HorizontalPartitioning.SubTreePrepare

Input: Input string S , S-prefix π
Output: Arrays SA and LCP corresponding suffix sub-tree Tπ

1 SA contains the locations of S-prefix π in string S
2 LCP ← {}
3 ISA← {0, 1, ..., |SA| − 1}
4 A← {0, 0, ..., 0}
5 Buf ← {}
6 P ← {0, 1, ..., |L| − 1}
7 start ← |π|
8 while there exists an undefined Buf [i ], 1 ≤ i ≤ |SA| − 1 do
9 range ← GetRangeOfSymbols

10 for i ← 0 to |SA| − 1 do
11 if ISA[i ] 6= done then
12 Buf [ISA[i ]]← ReadRange(S , SA[ISA[i ]] + start, range)

// ReadRange(S,a,b) reads b symbols of S starting at
position a

13 for every active area AA do
14 Reorder the elements of Buf , P and SA in AA so that Buf

is lexicographically sorted. In the process maintain the
index ISA

15 If two or more elements {a1, ..., at} ∈ AA, 2 ≤ t, exist such
that Buf [a1] = ... = Buf [ai ] introduce for them a new
active area

16 for all i such that Buf [i ] is not defined, 1 ≤ i ≤ |SA| − 1 do
17 cp is the common prefix of Buf [i − 1] and Buf [i ]
18 if |cp| < range then
19 Buf [i ]← (Buf [i − 1][|cp|],Buf [i ][|cp|], start + |cp|)
20 if Buf [i − 1] is defined or i = 1 then
21 Mark ISA[P[i − 1]] and A[i − 1] as done

22 if Buf [i + 1] is defined or i = [SA]− 1 then
23 Mark ISA[P[i ]] and A[i ] as done // last element of

an active area

24 start ← start + range

25 return (SA,LCP)



Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Analysis: Horizontal partitioning

Expected behaviour:

Define n the number of unfinished branches, then
n · range = O(M).

Intuitively n decreases and range increases during execution of
lines 8-24.

For length k, there can be at most σk unique strings. For
random text and step 1 ≤ i ≤ k , strings are non-unique until
k is reached.

If O(M) random strings need to be processed, then lines 8-24
is iterated O(logσ M) times. The big-oh constant depends on
range.
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Analysis: Horizontal partitioning — Time

Each iteration:

1 Lines 10-12 required n time to fill the buffers (constant time
read).

2 String sorting requires O(n · range) time since the average
distinguising prefix size equals O(range).

3 Lines 16-23 require O(n · range) time in the worst case.

Overall: Assuming p processors equally balanced after processing
O(N/M) virtual groups require

O

(
N

M

M logσ M

p

)
= O

(
N

p
logσ M

)
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Analysis: Horizontal partitioning — I/O

1 Cache misses occur in lines 10-12 only:

If n ≥ N
B , then O

(
N
B

)
I/Os.

Else: O(n) I/Os

2 When does the change from n ≥ N
B to n < N

B occur?

3 Assuming uniformly random text, n = c ·M for some constant
c all the time! (all branches are open until the last iteration)

4 Suffix subtree construction from SA and LCP requires a single
scan(N) I/Os only and is omitted.

5 I/O complexity for horizontal partitioning is thus

O

(
min

(
M,

N

B

)
· logσ M

)
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Wrap-up

Parallel time complexity of ERA (assuming σ ≤ M):

O

(
N logσ

N

M
+

(
N

M

)2

+
N

p
logσ M

)

Parallel cache complexity of ERA (assuming M ≥
√

N):

O

(
N

B
logσ

N

M
+

min
(
M, NB

)
· logσ M

p

)
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Empirical evaluation

Testing environment:

2x 16-core AMD Opteron 6272 @2,100 MHz

128 GiB RAM

Seagate Baracuda 250 GB, 7,200 RPM, 32 MiB cache, SATA

Ubuntu server 12.04, Linux kernel 3.11.0

ext4 file system, deadline I/O scheduler

ERA parameters:

Memory size per core: 2 GiB

Input text: Human genome HG18.txt, 2.8 Gbp

ERA modification: Call fsync() after writing each file.
ERA output:

Total suffix tree size: 77.3 GB stored in 187 files

Ttop size: 10.2 KB
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Results – 1
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Results – 2

So what is the machine doing?

string cpy Parsing and copying the string.

vertpart Vertical partitioning.

cnt1, cnt* Horizontal partitioning: determining locations of
S-prefix in virtual trees of size 1 or > 1.

filbuf Horizontal partitioning: reading range characters
from S-prefix locations.

sort Horizontal partitioning: string sorting, implicit LCP,
SA construction.

write Horizontal partitioning: extraction from LCP and SA
to suffix tree, write to disk.
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Results – 2 contd.
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Results – 2 contd.
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Results – 2 contd.
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Hypotheis 1

Observation 1: The majority of time is spent writing the final
result to the disk.

Hypothesis 1: Problem is the disk performance, so replace HDD
with SSD.
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Results – 3
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Hypotheis 2

Observation 2: The amount of time for writting decreased, but as
the number of cores grows, it is still substantial.

Hypothesis 2: There it is still a problem with a disk performance
and consequently further speed-up disk by writting to /dev/null.
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Results – 4
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Results – 4 contd.
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Hypotheis 3

Observation 3: Things are getting better, but there is still an
increase in time when the number of cores is increased.

Hypothesis 3: ??

Check in more detail what the processes are doing.
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Results – 5 (p = 16)
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Results – 5 (p = 16), strace
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Results – 5 (p = 32)
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Results – 5 (p = 32), strace
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Conclusion

Huge gap between the theoretical time and I/O asymptotically
tight algorithms and the practical ones.

ERA despite being practically the fastest algorithm is not
theoretically tight even for random input strings with
uniform substring distribution.

Open challenges:

Analyse ERA bottlenecks for further improvements (see if they
match the critical terms in time and I/O complexities).

Shall we choose some other basic technique for the
implementation of a practical algorithm?

Design a theoretically tight yet practically competitive parallel
algorithm for suffix tree construction.
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Thank you.

Matevž Jekovec
matevz.jekovec@fri.uni-lj.si

Laboratorij za vseprisotne sisteme
Laboratory for Ubiquitous SYstems
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Andrej Brodnik
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Extra — List of all experiments

Shown at the presentation:

Execution time for different p, speed-up, efficiency.

CPU times, iostat and mpstat per different phases for
p = {1, 2, 3, 4, 6, 8, 12, 16, 20, 24, 27, 32}.
iostat output for various p.

mpstat output for various p.

Work per core for single execution for p = 32.

Using strace, fetching read, write, lseek syscalls.
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Extra — List of all experiments contd.

Test scenarios:

Original code + added fsync(), various # of cores, various
mem. size per core.

Various string buffer sizes BUF TYPE= {8, 16, 32, 64} bit.

Integration of Multikey cached quicksort
(Rantala-Bentley-Sedgewick) instead of GNU qsort.

Maximum limit of simultaneously opened files for writing
F = {1, 2, 3, 4, 5, 6, 12, 16}.
Output to /dev/null with probability Pr = [0, 0.1...1].

Separated disk for writing and reading.

SSD for reading and/or writing.

Different file system schedulers: noop, default, cfq.

Different file system max queue length.

Output to raw device without file system.

Execution on 12x Raspberry π with shared NFS storage.
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