
ERA revisited: Theoretical and Experimental
evaluation

Matevž Jekovec, Andrej Brodnik

University of Ljubljana
Faculty of Computer and Information Science

KAUST, March 1-5, 2014

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Text indexing problem

Problem statement

Given unstructured input string S consisting of N characters from
alphabet Σ of size σ build an index such that for the pattern P we:

determine whether P occurs in S in time O(P),

find all occurrences of P in S in time O(P + occ),

find the longest common prefix (LCP) of P and any suffix of
S in time O(LCP(P,S)).

Solution

Suffix tree and suffix array (SA) with LCP information are
fundamental data structures for indexing unstructured text.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Text indexing problem

Problem statement

Given unstructured input string S consisting of N characters from
alphabet Σ of size σ build an index such that for the pattern P we:

determine whether P occurs in S in time O(P),

find all occurrences of P in S in time O(P + occ),

find the longest common prefix (LCP) of P and any suffix of
S in time O(LCP(P, S)).

Solution

Suffix tree and suffix array (SA) with LCP information are
fundamental data structures for indexing unstructured text.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Text indexing problem

Problem statement

Given unstructured input string S consisting of N characters from
alphabet Σ of size σ build an index such that for the pattern P we:

determine whether P occurs in S in time O(P),

find all occurrences of P in S in time O(P + occ),

find the longest common prefix (LCP) of P and any suffix of
S in time O(LCP(P, S)).

Solution

Suffix tree and suffix array (SA) with LCP information are
fundamental data structures for indexing unstructured text.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Suffix tree — Example

1 $
2 A$
3 ABRA$
4 ABRAKADABRA$
5 ADABRA$
6 AKADABRA$
7 BRA$
8 BRAKADABRA$
9 DABRA$
10 KADABRA
11 RA$
12 RAKADABRA$

1 2 3 4 5 6 7 8 9 10 11 12

T=ABRAKADABRA$

12

$ A BRA

7

DABRA$

5

KADABRA$ RA

11

$ BRA

6

DABRA$

4

KADABRA$

8

$

1

KADABRA$

9

$

2

KADABRA$

10

$

3

KADABRA$

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Suffix tree construction algorithms

Theoretical:

W (’73), McC (’78) U (’95) F-C et al. (’00)

Work w.c. O(N) O(N) O(N lg N)

Online No Yes Yes1

I/O efficiency String String Result+String

Unbounded Σ No No Yes

Parallel No No PDAM

Practical:

Semi-disk-based Out-of-core
TDD TRLS. B2ST WF ERA PCF
(’04) (’07) (’09) (’09) (’11) (’13)

Work w.c. O(N2) O(N2) O(N2) O(N2) O(N2) O(
√

pN)

I/O eff. R. R. R.+S. R.+S. R.+S. R.+S.

Unbnd. Σ No No No No No No

Parallel No No No Yes Yes Yes

1Bedathur and Haritsa (2004)

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Suffix tree construction algorithms

Theoretical:

W (’73), McC (’78) U (’95) F-C et al. (’00)

Work w.c. O(N) O(N) O(N lg N)

Online No Yes Yes1

I/O efficiency String String Result+String

Unbounded Σ No No Yes

Parallel No No PDAM

Practical:

Semi-disk-based Out-of-core
TDD TRLS. B2ST WF ERA PCF
(’04) (’07) (’09) (’09) (’11) (’13)

Work w.c. O(N2) O(N2) O(N2) O(N2) O(N2) O(
√

pN)

I/O eff. R. R. R.+S. R.+S. R.+S. R.+S.

Unbnd. Σ No No No No No No

Parallel No No No Yes Yes Yes
1Bedathur and Haritsa (2004)

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Suffix tree construction algorithms

Theoretical:

W (’73), McC (’78) U (’95) F-C et al. (’00)

Work w.c. O(N) O(N) O(N lg N)

Online No Yes Yes1

I/O efficiency String String Result+String

Unbounded Σ No No Yes

Parallel No No PDAM

Practical:

Semi-disk-based Out-of-core
TDD TRLS. B2ST WF ERA PCF
(’04) (’07) (’09) (’09) (’11) (’13)

Work w.c. O(N2) O(N2) O(N2) O(N2) O(N2) O(
√

pN)

I/O eff. R. R. R.+S. R.+S. R.+S. R.+S.

Unbnd. Σ No No No No No No

Parallel No No No Yes Yes Yes
1Bedathur and Haritsa (2004)

Huge gap between the theoretical and
practical results!

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Suffix tree construction lower bounds

Sequential:
bounded Σ unbounded Σ

Time Ω(Sort(N)) Ω(Sort(N))

I/Os2 Ω(Sort(N)) Ω(Sort(N))

Space3 Ω(N lg σ) bits Ω(N lg σ) bits

Parallel on p processing units:
bounded Σ unbounded Σ

Parallel time Ω
(
N
p

)
Ω
(
N
p log N

)
Parallel I/Os4 Ω

(
N
pB

)
Ω
(

N
pB logM

B

N
B

)
Space3 Ω(N lg σ) bits Ω(N lg σ) bits

2EM model
3Uncompressed index in word RAM
4PEM model

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Suffix tree construction lower bounds

Sequential:
bounded Σ unbounded Σ

Time Ω(Sort(N)) Ω(Sort(N))

I/Os2 Ω(Sort(N)) Ω(Sort(N))

Space3 Ω(N lg σ) bits Ω(N lg σ) bits

Parallel on p processing units:
bounded Σ unbounded Σ

Parallel time Ω(Sortp(N)) Ω(Sortp(N))

Parallel I/Os4 Ω(Sortp(N)) Ω(Sortp(N))

Space3 Ω(N lg σ) bits Ω(N lg σ) bits

2EM model
3Uncompressed index in word RAM
4PEM model

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Suffix tree construction lower bounds

Sequential:
bounded Σ unbounded Σ

Time Ω(N) Ω(N log N)

I/Os2 Ω
(
N
B

)
Ω
(
N
B logM

B

N
B

)
Space3 Ω(N lg σ) bits Ω(N lg σ) bits

Parallel on p processing units:
bounded Σ unbounded Σ

Parallel time Ω
(
N
p

)
Ω
(
N
p log N

)
Parallel I/Os4 Ω

(
N
pB

)
Ω
(

N
pB logM

B

N
B

)
Space3 Ω(N lg σ) bits Ω(N lg σ) bits

2EM model
3Uncompressed index in word RAM
4PEM model

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Challenges

Theoretical algorithms: Lack of locality of reference.
Goal: Use scans only both for input text and the resulting suffix
tree!
Counterintuitive: Input text is arbitrary, suffix tree is
lexicographically ordered.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Challenges

Theoretical algorithms: Lack of locality of reference.

Goal: Use scans only both for input text and the resulting suffix
tree!
Counterintuitive: Input text is arbitrary, suffix tree is
lexicographically ordered.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Challenges

Theoretical algorithms: Lack of locality of reference.
Goal: Use scans only both for input text and the resulting suffix
tree!

Counterintuitive: Input text is arbitrary, suffix tree is
lexicographically ordered.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Challenges

Theoretical algorithms: Lack of locality of reference.
Goal: Use scans only both for input text and the resulting suffix
tree!
Counterintuitive: Input text is arbitrary, suffix tree is
lexicographically ordered.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Challenges contd.

I/O efficient solution (eg. WF-ERA, B2ST-PCF):

1 Scan part of the input text from the disk,

2 do in-memory sorting (=random accesses in fast memory
only!),

3 construct the corresponding part of the suffix tree,

4 glue parts together,

5 and contiguously write it to disk.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Challenges contd.

I/O efficient solution (eg. WF-ERA, B2ST-PCF):

1 Scan part of the input text from the disk,

2 do in-memory sorting (=random accesses in fast memory
only!),

3 construct the corresponding part of the suffix tree,

4 glue parts together,

5 and contiguously write it to disk.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Challenges contd.

I/O efficient solution (eg. WF-ERA, B2ST-PCF):

1 Scan part of the input text from the disk,

2 do in-memory sorting (=random accesses in fast memory
only!),

3 construct the corresponding part of the suffix tree,

4 glue parts together,

5 and contiguously write it to disk.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Challenges contd.

I/O efficient solution (eg. WF-ERA, B2ST-PCF):

1 Scan part of the input text from the disk,

2 do in-memory sorting (=random accesses in fast memory
only!),

3 construct the corresponding part of the suffix tree,

4 glue parts together,

5 and contiguously write it to disk.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Challenges contd.

I/O efficient solution (eg. WF-ERA, B2ST-PCF):

1 Scan part of the input text from the disk,

2 do in-memory sorting (=random accesses in fast memory
only!),

3 construct the corresponding part of the suffix tree,

4 glue parts together,

5 and contiguously write it to disk.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

ERA — Elastic Range5

The fastest practical, parallel suffix tree construction
algorithm to date.

Time complexity: O(N2) w.c. — for extremely skewed text!

Yet, it’s fast in practice: Constructs and stores the human
genome’s suffix tree in 20 minutes on 16-core desktop PC
with HDD or 13 minutes with SSD!

5Mansour, Allam, Skiadopoulos, Kalnis (2011)

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

ERA — Elastic Range5

The fastest practical, parallel suffix tree construction
algorithm to date.

Time complexity: O(N2) w.c. — for extremely skewed text!

Yet, it’s fast in practice: Constructs and stores the human
genome’s suffix tree in 20 minutes on 16-core desktop PC
with HDD or 13 minutes with SSD!

5Mansour, Allam, Skiadopoulos, Kalnis (2011)

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

ERA — Elastic Range5

The fastest practical, parallel suffix tree construction
algorithm to date.

Time complexity: O(N2) w.c. — for extremely skewed text!

Yet, it’s fast in practice: Constructs and stores the human
genome’s suffix tree in 20 minutes on 16-core desktop PC
with HDD or 13 minutes with SSD!

5Mansour, Allam, Skiadopoulos, Kalnis (2011)

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

ERA — Elastic Range5

The fastest practical, parallel suffix tree construction
algorithm to date.

Time complexity: O(N2) w.c. — for extremely skewed text!

Yet, it’s fast in practice: Constructs and stores the human
genome’s suffix tree in 20 minutes on 16-core desktop PC
with HDD or 13 minutes with SSD!

5Mansour, Allam, Skiadopoulos, Kalnis (2011)

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

ERA contd.

ERA constructs the suffix tree in two steps:

1 The vertical partitioning step determines 1) the suffix
subtrees just fitting into the main memory M and 2)
constructs the suffix tree top.

2 The horizontal partitioning step builds the actual suffix
subtrees.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

ERA contd.

ERA constructs the suffix tree in two steps:
1 The vertical partitioning step determines 1) the suffix

subtrees just fitting into the main memory M and 2)
constructs the suffix tree top.

2 The horizontal partitioning step builds the actual suffix
subtrees.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

ERA contd.

ERA constructs the suffix tree in two steps:
1 The vertical partitioning step determines 1) the suffix

subtrees just fitting into the main memory M and 2)
constructs the suffix tree top.

2 The horizontal partitioning step builds the actual suffix
subtrees.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

ERA contd.

Algorithm 1: ERA

Input: String S , Alphabet Σ, Processors P, Private cache size M
Output: Suffix tree T

1 Ttop,G ← VerticalPartitioning(S ,Σ,M)
2 T ← Ttop
3 while |G | > 0 do
4 for p ∈ P do in parallel
5 if |G | > 0 then
6 π ← G .pop()
7 Tπ ← HorizontalPartitioning(S ,Σ, π)
8 Link(T , Tπ)

9 return T

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Vertical partitioning

Define S-prefix π as the prefix of the suffixes in the text.

Idea: The S-prefix frequency fπ equals # of leaves in the suffix
subtree corresponding to π. Assume 2fπ is the w. c. subtree size.
Vertical partitioning steps:

1 Scan the text and obtain the characters frequency fπ : π ∈ Σ.

We counted all S-prefixes of length 1.

2 For each π : fπ > M, expand S-prefix with the right character
and count the frequency of obtained S-prefixes (now length 2).

3 Repeat step two for S-prefixes of length 3, 4..., until all Tπ just
fit into the memory M.

4 Extra: To optimally fill the main memory, combine the
S-prefixes into virtual groups G , fitting into the main memory
as tight as possible.

Use First-Fit Decreasing heuristic for bin packing problem6.

6Yue (1991)

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Vertical partitioning

Define S-prefix π as the prefix of the suffixes in the text.
Idea: The S-prefix frequency fπ equals # of leaves in the suffix
subtree corresponding to π. Assume 2fπ is the w. c. subtree size.

Vertical partitioning steps:
1 Scan the text and obtain the characters frequency fπ : π ∈ Σ.

We counted all S-prefixes of length 1.

2 For each π : fπ > M, expand S-prefix with the right character
and count the frequency of obtained S-prefixes (now length 2).

3 Repeat step two for S-prefixes of length 3, 4..., until all Tπ just
fit into the memory M.

4 Extra: To optimally fill the main memory, combine the
S-prefixes into virtual groups G , fitting into the main memory
as tight as possible.

Use First-Fit Decreasing heuristic for bin packing problem6.

6Yue (1991)

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Vertical partitioning

Define S-prefix π as the prefix of the suffixes in the text.
Idea: The S-prefix frequency fπ equals # of leaves in the suffix
subtree corresponding to π. Assume 2fπ is the w. c. subtree size.
Vertical partitioning steps:

1 Scan the text and obtain the characters frequency fπ : π ∈ Σ.

We counted all S-prefixes of length 1.

2 For each π : fπ > M, expand S-prefix with the right character
and count the frequency of obtained S-prefixes (now length 2).

3 Repeat step two for S-prefixes of length 3, 4..., until all Tπ just
fit into the memory M.

4 Extra: To optimally fill the main memory, combine the
S-prefixes into virtual groups G , fitting into the main memory
as tight as possible.

Use First-Fit Decreasing heuristic for bin packing problem6.

6Yue (1991)

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Vertical partitioning

Define S-prefix π as the prefix of the suffixes in the text.
Idea: The S-prefix frequency fπ equals # of leaves in the suffix
subtree corresponding to π. Assume 2fπ is the w. c. subtree size.
Vertical partitioning steps:

1 Scan the text and obtain the characters frequency fπ : π ∈ Σ.

We counted all S-prefixes of length 1.

2 For each π : fπ > M, expand S-prefix with the right character
and count the frequency of obtained S-prefixes (now length 2).

3 Repeat step two for S-prefixes of length 3, 4..., until all Tπ just
fit into the memory M.

4 Extra: To optimally fill the main memory, combine the
S-prefixes into virtual groups G , fitting into the main memory
as tight as possible.

Use First-Fit Decreasing heuristic for bin packing problem6.

6Yue (1991)

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Vertical partitioning

Define S-prefix π as the prefix of the suffixes in the text.
Idea: The S-prefix frequency fπ equals # of leaves in the suffix
subtree corresponding to π. Assume 2fπ is the w. c. subtree size.
Vertical partitioning steps:

1 Scan the text and obtain the characters frequency fπ : π ∈ Σ.

We counted all S-prefixes of length 1.

2 For each π : fπ > M, expand S-prefix with the right character
and count the frequency of obtained S-prefixes (now length 2).

3 Repeat step two for S-prefixes of length 3, 4..., until all Tπ just
fit into the memory M.

4 Extra: To optimally fill the main memory, combine the
S-prefixes into virtual groups G , fitting into the main memory
as tight as possible.

Use First-Fit Decreasing heuristic for bin packing problem6.

6Yue (1991)

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Vertical partitioning

Define S-prefix π as the prefix of the suffixes in the text.
Idea: The S-prefix frequency fπ equals # of leaves in the suffix
subtree corresponding to π. Assume 2fπ is the w. c. subtree size.
Vertical partitioning steps:

1 Scan the text and obtain the characters frequency fπ : π ∈ Σ.

We counted all S-prefixes of length 1.

2 For each π : fπ > M, expand S-prefix with the right character
and count the frequency of obtained S-prefixes (now length 2).

3 Repeat step two for S-prefixes of length 3, 4..., until all Tπ just
fit into the memory M.

4 Extra: To optimally fill the main memory, combine the
S-prefixes into virtual groups G , fitting into the main memory
as tight as possible.

Use First-Fit Decreasing heuristic for bin packing problem6.

6Yue (1991)

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Vertical partitioning — Example

π = ACC
Frequency fACC = 12

TAACCCTA
ACCCTAAC
CCTAACCC
TAACCCTA
ACCCTAAC
CCTAACCC
TAACCCTA
ACCCTAAC
CCTAACCC
TAACCCTA
ACCCTAAC
CCTAACCC
TAAC

101:0

$

2:1

A

1:4

TAAC

4:1

C

3:2

AC

4:1

C

101:0

$

5:6

CCTAAC

$ CCTAAC

101:0

$

5:6

CCTAAC

$ CCTAAC

101:0

$

5:6

CCTAAC

101:0

$

11:6

CCTAAC

$ CCTAAC

101:0

$

7:4

TAAC

5:1

C

101:0

$

11:6

CCTAAC

$ CCTAAC

7:4

TAAC

6:5

CTAAC

$ CCTAAC $ CCTAAC

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Horizontal partitioning

For each virtual group, construct the corresponding suffix subtrees
in parallel:

1 Locate and store all positions of S-prefixes for the virtual
group. Each of located S-prefixes is to become a leaf in the
working suffix subtree.

2 Calculate the optimal buffer length range

Note: The name Elastic Range.

3 Read the next range characters for each S-prefix occurrence.

4 Do in-memory sorting of read text, remember branching
information (=LCP) and the original position (=SA).

5 Until all the read buffers are unique, goto step 2.

In the next step: While less leafs are orphans, range increases,
frequency drops.

6 Construct suffix subtree in D-F manner using SA and LCP.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Horizontal partitioning

For each virtual group, construct the corresponding suffix subtrees
in parallel:

1 Locate and store all positions of S-prefixes for the virtual
group. Each of located S-prefixes is to become a leaf in the
working suffix subtree.

2 Calculate the optimal buffer length range

Note: The name Elastic Range.

3 Read the next range characters for each S-prefix occurrence.

4 Do in-memory sorting of read text, remember branching
information (=LCP) and the original position (=SA).

5 Until all the read buffers are unique, goto step 2.

In the next step: While less leafs are orphans, range increases,
frequency drops.

6 Construct suffix subtree in D-F manner using SA and LCP.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Horizontal partitioning

For each virtual group, construct the corresponding suffix subtrees
in parallel:

1 Locate and store all positions of S-prefixes for the virtual
group. Each of located S-prefixes is to become a leaf in the
working suffix subtree.

2 Calculate the optimal buffer length range

Note: The name Elastic Range.

3 Read the next range characters for each S-prefix occurrence.

4 Do in-memory sorting of read text, remember branching
information (=LCP) and the original position (=SA).

5 Until all the read buffers are unique, goto step 2.

In the next step: While less leafs are orphans, range increases,
frequency drops.

6 Construct suffix subtree in D-F manner using SA and LCP.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Horizontal partitioning

For each virtual group, construct the corresponding suffix subtrees
in parallel:

1 Locate and store all positions of S-prefixes for the virtual
group. Each of located S-prefixes is to become a leaf in the
working suffix subtree.

2 Calculate the optimal buffer length range

Note: The name Elastic Range.

3 Read the next range characters for each S-prefix occurrence.

4 Do in-memory sorting of read text, remember branching
information (=LCP) and the original position (=SA).

5 Until all the read buffers are unique, goto step 2.

In the next step: While less leafs are orphans, range increases,
frequency drops.

6 Construct suffix subtree in D-F manner using SA and LCP.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Horizontal partitioning

For each virtual group, construct the corresponding suffix subtrees
in parallel:

1 Locate and store all positions of S-prefixes for the virtual
group. Each of located S-prefixes is to become a leaf in the
working suffix subtree.

2 Calculate the optimal buffer length range

Note: The name Elastic Range.

3 Read the next range characters for each S-prefix occurrence.

4 Do in-memory sorting of read text, remember branching
information (=LCP) and the original position (=SA).

5 Until all the read buffers are unique, goto step 2.

In the next step: While less leafs are orphans, range increases,
frequency drops.

6 Construct suffix subtree in D-F manner using SA and LCP.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Horizontal partitioning

For each virtual group, construct the corresponding suffix subtrees
in parallel:

1 Locate and store all positions of S-prefixes for the virtual
group. Each of located S-prefixes is to become a leaf in the
working suffix subtree.

2 Calculate the optimal buffer length range

Note: The name Elastic Range.

3 Read the next range characters for each S-prefix occurrence.

4 Do in-memory sorting of read text, remember branching
information (=LCP) and the original position (=SA).

5 Until all the read buffers are unique, goto step 2.

In the next step: While less leafs are orphans, range increases,
frequency drops.

6 Construct suffix subtree in D-F manner using SA and LCP.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Horizontal partitioning

For each virtual group, construct the corresponding suffix subtrees
in parallel:

1 Locate and store all positions of S-prefixes for the virtual
group. Each of located S-prefixes is to become a leaf in the
working suffix subtree.

2 Calculate the optimal buffer length range

Note: The name Elastic Range.

3 Read the next range characters for each S-prefix occurrence.

4 Do in-memory sorting of read text, remember branching
information (=LCP) and the original position (=SA).

5 Until all the read buffers are unique, goto step 2.

In the next step: While less leafs are orphans, range increases,
frequency drops.

6 Construct suffix subtree in D-F manner using SA and LCP.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Model of computation

Parallel External Memory model (PEM):7

Shared memory model,

2-level memory hierarchy:

p processors, each with
private cache of size M
bytes.
parallel memory transfers
in blocks of size B bytes.

Performance metrics:

parallel time,
parallel block transfers
(cache complexity).

Concurrent reads assumed.

B

Memory
(n)

CPU1

Caches
(M)
B

blocksM
B

CPU2

CPUp

7Arge, Goodrich, Nelson, Sitchinava 2008

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Model of computation

Parallel External Memory model (PEM):7

Shared memory model,

2-level memory hierarchy:

p processors, each with
private cache of size M
bytes.
parallel memory transfers
in blocks of size B bytes.

Performance metrics:

parallel time,
parallel block transfers
(cache complexity).

Concurrent reads assumed.

B

Memory
(n)

CPU1

Caches
(M)
B

blocksM
B

CPU2

CPUp

7Arge, Goodrich, Nelson, Sitchinava 2008

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Assumption

If worst-case input text for ERA is skewed:

T = AAA...

then

vertical partitioning requires N scans = O(N2) comparisons,

cache complexity O
(
N2

B

)
.

Our assumption:

Input text is random (viable for a single human genome,
proteins).

At any place the probability of each character to occur is 1
σ .

Goal: Calculate expected time and cache complexity.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Assumption

If worst-case input text for ERA is skewed:

T = AAA...

then

vertical partitioning requires N scans = O(N2) comparisons,

cache complexity O
(
N2

B

)
.

Our assumption:

Input text is random (viable for a single human genome,
proteins).

At any place the probability of each character to occur is 1
σ .

Goal: Calculate expected time and cache complexity.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Assumption

If worst-case input text for ERA is skewed:

T = AAA...

then

vertical partitioning requires N scans = O(N2) comparisons,

cache complexity O
(
N2

B

)
.

Our assumption:

Input text is random (viable for a single human genome,
proteins).

At any place the probability of each character to occur is 1
σ .

Goal: Calculate expected time and cache complexity.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Algorithm 2: VerticalPartitioning

Input: Input string S , alphabet Σ, 1st level memory size M
Output: Set of VirtualTrees

1 VirtualTrees ← ∅
2 P ← ∅
3 P ′ ← {∀ symbol s ∈ Σ generate a S-prefix πi ∈ P ′}
4 repeat
5 scan input string S
6 count in S the frequency fπi of every S-prefix πi ∈ P ′

7 forall the πi ∈ P ′ do
8 if 0 < fπi ≤ M then add πi to P
9 else forall the symbol s ∈ Σ do add πi s to P ′

10 remove πi from P ′

11 until P ′ = ∅
12 sort P in descending fπi order
13 repeat
14 G ← ∅
15 add P.head to G and remove the item from P
16 curr ← next item in P
17 while NOT end of P do
18 if fcurr + SUMγi∈G (fγi) ≤ M then
19 add curr to G and remove the item from P

20 curr ← next item in P

21 add G to VirtualTrees

22 until P = ∅
23 return VirtualTrees

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Analysis: Vertical partitioning

Expected behavior:
1 Extension of S-prefixes:

Initially σ S-prefixes of frequency fπ = N
σ each.

fπ divided by σ each iteration until fπ < M.
Total logσ N − logσ M = logσ

N
M iterations.

Finally N
M unique S-prefixes with frequency M

σ < fπ ≤ M.

2 Atomic sorting the frequencies using one of the
comparison-based sorting algorithms.

3 Virtual trees construction (bin packing problem):

At least 1 and at most σ S-prefixes are packed each iteration.
External loop iterated between N

σM and N
M times.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Analysis: Vertical partitioning

Expected behavior:
1 Extension of S-prefixes:

Initially σ S-prefixes of frequency fπ = N
σ each.

fπ divided by σ each iteration until fπ < M.
Total logσ N − logσ M = logσ

N
M iterations.

Finally N
M unique S-prefixes with frequency M

σ < fπ ≤ M.

2 Atomic sorting the frequencies using one of the
comparison-based sorting algorithms.

3 Virtual trees construction (bin packing problem):

At least 1 and at most σ S-prefixes are packed each iteration.
External loop iterated between N

σM and N
M times.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Analysis: Vertical partitioning

Expected behavior:
1 Extension of S-prefixes:

Initially σ S-prefixes of frequency fπ = N
σ each.

fπ divided by σ each iteration until fπ < M.
Total logσ N − logσ M = logσ

N
M iterations.

Finally N
M unique S-prefixes with frequency M

σ < fπ ≤ M.

2 Atomic sorting the frequencies using one of the
comparison-based sorting algorithms.

3 Virtual trees construction (bin packing problem):

At least 1 and at most σ S-prefixes are packed each iteration.
External loop iterated between N

σM and N
M times.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Analysis: Vertical partitioning

Expected behavior:
1 Extension of S-prefixes:

Initially σ S-prefixes of frequency fπ = N
σ each.

fπ divided by σ each iteration until fπ < M.
Total logσ N − logσ M = logσ

N
M iterations.

Finally N
M unique S-prefixes with frequency M

σ < fπ ≤ M.

2 Atomic sorting the frequencies using one of the
comparison-based sorting algorithms.

3 Virtual trees construction (bin packing problem):

At least 1 and at most σ S-prefixes are packed each iteration.
External loop iterated between N

σM and N
M times.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Analysis: Vertical partitioning — Time

1 Extension of S-prefixes
logσ

N
M∑

i=1

(
scan(n) + σi+1

)
= logσ

N
M · scan(n) + σ2(N−M)

M·σ−M =

O
(
N logσ

N
M + σN

M

)
2 Sorting

O
(
N
M lg N

M

)
3 Virtual trees construction

O
((

N
M

)2)
Overall:

If σ < M: O
(

N logσ
N
M +

(
N
M

)2)
If σ ≥ M: O

(
N logσ

N
M + σN

M + N
M lg N

M +
(
N
M

)2)

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Analysis: Vertical partitioning — Time

1 Extension of S-prefixes
logσ

N
M∑

i=1

(
scan(n) + σi+1

)
= logσ

N
M · scan(n) + σ2(N−M)

M·σ−M =

O
(
N logσ

N
M + σN

M

)

2 Sorting
O
(
N
M lg N

M

)
3 Virtual trees construction

O
((

N
M

)2)
Overall:

If σ < M: O
(

N logσ
N
M +

(
N
M

)2)
If σ ≥ M: O

(
N logσ

N
M + σN

M + N
M lg N

M +
(
N
M

)2)

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Analysis: Vertical partitioning — Time

1 Extension of S-prefixes
logσ

N
M∑

i=1

(
scan(n) + σi+1

)
= logσ

N
M · scan(n) + σ2(N−M)

M·σ−M =

O
(
N logσ

N
M + σN

M

)
2 Sorting

O
(
N
M lg N

M

)

3 Virtual trees construction
O
((

N
M

)2)
Overall:

If σ < M: O
(

N logσ
N
M +

(
N
M

)2)
If σ ≥ M: O

(
N logσ

N
M + σN

M + N
M lg N

M +
(
N
M

)2)

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Analysis: Vertical partitioning — Time

1 Extension of S-prefixes
logσ

N
M∑

i=1

(
scan(n) + σi+1

)
= logσ

N
M · scan(n) + σ2(N−M)

M·σ−M =

O
(
N logσ

N
M + σN

M

)
2 Sorting

O
(
N
M lg N

M

)
3 Virtual trees construction

O
((

N
M

)2)

Overall:

If σ < M: O
(

N logσ
N
M +

(
N
M

)2)
If σ ≥ M: O

(
N logσ

N
M + σN

M + N
M lg N

M +
(
N
M

)2)

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Analysis: Vertical partitioning — Time

1 Extension of S-prefixes
logσ

N
M∑

i=1

(
scan(n) + σi+1

)
= logσ

N
M · scan(n) + σ2(N−M)

M·σ−M =

O
(
N logσ

N
M + σN

M

)
2 Sorting

O
(
N
M lg N

M

)
3 Virtual trees construction

O
((

N
M

)2)
Overall:

If σ < M: O
(

N logσ
N
M +

(
N
M

)2)
If σ ≥ M: O

(
N logσ

N
M + σN

M + N
M lg N

M +
(
N
M

)2)

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Analysis: Vertical partitioning — I/O

1 Extension of S-prefixes

Line 6: scan(N) for reading

|P ′| = O
(
N
M

)
If |P ′| ≤ M: no I/Os for writing fπ
If |P ′| > M: M

|P′| = M2

N I/Os for storing fπ
Lines 7-10:
If |P ′| ≤ M: no I/Os

If |P ′| > M: P′

B = N
M·B I/Os

2 Sorting |P| = N
M elements:

If M ≥
√

N: no I/Os
If M <

√
N: O(N

M·B logM
B

N
M·B) I/Os

3 Virtual tree G ≤ M:
M ≥

√
N: no I/Os

M <
√

N: |P|B = N
M·B I/Os

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Analysis: Vertical partitioning — I/O

1 Extension of S-prefixes

Line 6: scan(N) for reading
|P ′| = O

(
N
M

)
If |P ′| ≤ M: no I/Os for writing fπ
If |P ′| > M: M

|P′| = M2

N I/Os for storing fπ

Lines 7-10:
If |P ′| ≤ M: no I/Os

If |P ′| > M: P′

B = N
M·B I/Os

2 Sorting |P| = N
M elements:

If M ≥
√

N: no I/Os
If M <

√
N: O(N

M·B logM
B

N
M·B) I/Os

3 Virtual tree G ≤ M:
M ≥

√
N: no I/Os

M <
√

N: |P|B = N
M·B I/Os

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Analysis: Vertical partitioning — I/O

1 Extension of S-prefixes

Line 6: scan(N) for reading
|P ′| = O

(
N
M

)
If |P ′| ≤ M: no I/Os for writing fπ
If |P ′| > M: M

|P′| = M2

N I/Os for storing fπ
Lines 7-10:
If |P ′| ≤ M: no I/Os

If |P ′| > M: P′

B = N
M·B I/Os

2 Sorting |P| = N
M elements:

If M ≥
√

N: no I/Os
If M <

√
N: O(N

M·B logM
B

N
M·B) I/Os

3 Virtual tree G ≤ M:
M ≥

√
N: no I/Os

M <
√

N: |P|B = N
M·B I/Os

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Analysis: Vertical partitioning — I/O

1 Extension of S-prefixes

Line 6: scan(N) for reading
|P ′| = O

(
N
M

)
If |P ′| ≤ M: no I/Os for writing fπ
If |P ′| > M: M

|P′| = M2

N I/Os for storing fπ
Lines 7-10:
If |P ′| ≤ M: no I/Os

If |P ′| > M: P′

B = N
M·B I/Os

2 Sorting |P| = N
M elements:

If M ≥
√

N: no I/Os
If M <

√
N: O(N

M·B logM
B

N
M·B) I/Os

3 Virtual tree G ≤ M:
M ≥

√
N: no I/Os

M <
√

N: |P|B = N
M·B I/Os

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Analysis: Vertical partitioning — I/O

1 Extension of S-prefixes

Line 6: scan(N) for reading
|P ′| = O

(
N
M

)
If |P ′| ≤ M: no I/Os for writing fπ
If |P ′| > M: M

|P′| = M2

N I/Os for storing fπ
Lines 7-10:
If |P ′| ≤ M: no I/Os

If |P ′| > M: P′

B = N
M·B I/Os

2 Sorting |P| = N
M elements:

If M ≥
√

N: no I/Os
If M <

√
N: O(N

M·B logM
B

N
M·B) I/Os

3 Virtual tree G ≤ M:
M ≥

√
N: no I/Os

M <
√

N: |P|B = N
M·B I/Os

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Analysis: Vertical partitioning — I/O contd.

Overall:

If M ≥
√

N:
O
(
N
B logσ

N
M

)
If M <

√
N:

O
(

logσ
N
M ·
(
N
B + M2

)
+ N

M·B logM
B

N
M·B +

(
N

M·B
)2)

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Algorithm 3: HorizontalPartitioning.SubTreePrepare

Input: Input string S , S-prefix π
Output: Arrays SA and LCP corresponding suffix sub-tree Tπ

1 SA contains the locations of S-prefix π in string S
2 LCP ← {}
3 ISA← {0, 1, ..., |SA| − 1}
4 A← {0, 0, ..., 0}
5 Buf ← {}
6 P ← {0, 1, ..., |L| − 1}
7 start ← |π|
8 while there exists an undefined Buf [i], 1 ≤ i ≤ |SA| − 1 do
9 range ← GetRangeOfSymbols

10 for i ← 0 to |SA| − 1 do
11 if ISA[i] 6= done then
12 Buf [ISA[i]]← ReadRange(S , SA[ISA[i]] + start, range)

// ReadRange(S,a,b) reads b symbols of S starting at
position a

13 for every active area AA do
14 Reorder the elements of Buf , P and SA in AA so that Buf

is lexicographically sorted. In the process maintain the
index ISA

15 If two or more elements {a1, ..., at} ∈ AA, 2 ≤ t, exist such
that Buf [a1] = ... = Buf [ai] introduce for them a new
active area

16 for all i such that Buf [i] is not defined, 1 ≤ i ≤ |SA| − 1 do
17 cp is the common prefix of Buf [i − 1] and Buf [i]
18 if |cp| < range then
19 Buf [i]← (Buf [i − 1][|cp|],Buf [i][|cp|], start + |cp|)
20 if Buf [i − 1] is defined or i = 1 then
21 Mark ISA[P[i − 1]] and A[i − 1] as done

22 if Buf [i + 1] is defined or i = [SA]− 1 then
23 Mark ISA[P[i]] and A[i] as done // last element of

an active area

24 start ← start + range

25 return (SA,LCP)

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Analysis: Horizontal partitioning

Expected behaviour:

Define n the number of unfinished branches, then
n · range = O(M).

Intuitively n decreases and range increases during execution of
lines 8-24.

For length k, there can be at most σk unique strings. For
random text and step 1 ≤ i ≤ k , strings are non-unique until
k is reached.

If O(M) random strings need to be processed, then lines 8-24
is iterated O(logσ M) times. The big-oh constant depends on
range.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Analysis: Horizontal partitioning

Expected behaviour:

Define n the number of unfinished branches, then
n · range = O(M).

Intuitively n decreases and range increases during execution of
lines 8-24.

For length k, there can be at most σk unique strings. For
random text and step 1 ≤ i ≤ k , strings are non-unique until
k is reached.

If O(M) random strings need to be processed, then lines 8-24
is iterated O(logσ M) times. The big-oh constant depends on
range.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Analysis: Horizontal partitioning

Expected behaviour:

Define n the number of unfinished branches, then
n · range = O(M).

Intuitively n decreases and range increases during execution of
lines 8-24.

For length k, there can be at most σk unique strings. For
random text and step 1 ≤ i ≤ k , strings are non-unique until
k is reached.

If O(M) random strings need to be processed, then lines 8-24
is iterated O(logσ M) times. The big-oh constant depends on
range.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Analysis: Horizontal partitioning

Expected behaviour:

Define n the number of unfinished branches, then
n · range = O(M).

Intuitively n decreases and range increases during execution of
lines 8-24.

For length k, there can be at most σk unique strings. For
random text and step 1 ≤ i ≤ k , strings are non-unique until
k is reached.

If O(M) random strings need to be processed, then lines 8-24
is iterated O(logσ M) times. The big-oh constant depends on
range.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Analysis: Horizontal partitioning

Expected behaviour:

Define n the number of unfinished branches, then
n · range = O(M).

Intuitively n decreases and range increases during execution of
lines 8-24.

For length k, there can be at most σk unique strings. For
random text and step 1 ≤ i ≤ k , strings are non-unique until
k is reached.

If O(M) random strings need to be processed, then lines 8-24
is iterated O(logσ M) times. The big-oh constant depends on
range.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Analysis: Horizontal partitioning

Expected behaviour:

Define n the number of unfinished branches, then
n · range = O(M).

Intuitively n decreases and range increases during execution of
lines 8-24.

For length k, there can be at most σk unique strings. For
random text and step 1 ≤ i ≤ k , strings are non-unique until
k is reached.

If O(M) random strings need to be processed, then lines 8-24
is iterated O(logσ M) times. The big-oh constant depends on
range.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Analysis: Horizontal partitioning — Time

Each iteration:

1 Lines 10-12 required n time to fill the buffers (constant time
read).

2 String sorting requires O(n · range) time since the average
distinguising prefix size equals O(range).

3 Lines 16-23 require O(n · range) time in the worst case.

Overall: Assuming p processors equally balanced after processing
O(N/M) virtual groups require

O

(
N

M

M logσ M

p

)
= O

(
N

p
logσ M

)

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Analysis: Horizontal partitioning — Time

Each iteration:

1 Lines 10-12 required n time to fill the buffers (constant time
read).

2 String sorting requires O(n · range) time since the average
distinguising prefix size equals O(range).

3 Lines 16-23 require O(n · range) time in the worst case.

Overall: Assuming p processors equally balanced after processing
O(N/M) virtual groups require

O

(
N

M

M logσ M

p

)
= O

(
N

p
logσ M

)

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Analysis: Horizontal partitioning — Time

Each iteration:

1 Lines 10-12 required n time to fill the buffers (constant time
read).

2 String sorting requires O(n · range) time since the average
distinguising prefix size equals O(range).

3 Lines 16-23 require O(n · range) time in the worst case.

Overall: Assuming p processors equally balanced after processing
O(N/M) virtual groups require

O

(
N

M

M logσ M

p

)
= O

(
N

p
logσ M

)

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Analysis: Horizontal partitioning — Time

Each iteration:

1 Lines 10-12 required n time to fill the buffers (constant time
read).

2 String sorting requires O(n · range) time since the average
distinguising prefix size equals O(range).

3 Lines 16-23 require O(n · range) time in the worst case.

Overall: Assuming p processors equally balanced after processing
O(N/M) virtual groups require

O

(
N

M

M logσ M

p

)
= O

(
N

p
logσ M

)

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Analysis: Horizontal partitioning — Time

Each iteration:

1 Lines 10-12 required n time to fill the buffers (constant time
read).

2 String sorting requires O(n · range) time since the average
distinguising prefix size equals O(range).

3 Lines 16-23 require O(n · range) time in the worst case.

Overall: Assuming p processors equally balanced after processing
O(N/M) virtual groups require

O

(
N

M

M logσ M

p

)
= O

(
N

p
logσ M

)

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Analysis: Horizontal partitioning — I/O

1 Cache misses occur in lines 10-12 only:

If n ≥ N
B , then O

(
N
B

)
I/Os.

Else: O(n) I/Os

2 When does the change from n ≥ N
B to n < N

B occur?

3 Assuming uniformly random text, n = c ·M for some constant
c all the time! (all branches are open until the last iteration)

4 Suffix subtree construction from SA and LCP requires a single
scan(N) I/Os only and is omitted.

5 I/O complexity for horizontal partitioning is thus

O

(
min

(
M,

N

B

)
· logσ M

)

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Analysis: Horizontal partitioning — I/O

1 Cache misses occur in lines 10-12 only:

If n ≥ N
B , then O

(
N
B

)
I/Os.

Else: O(n) I/Os

2 When does the change from n ≥ N
B to n < N

B occur?

3 Assuming uniformly random text, n = c ·M for some constant
c all the time! (all branches are open until the last iteration)

4 Suffix subtree construction from SA and LCP requires a single
scan(N) I/Os only and is omitted.

5 I/O complexity for horizontal partitioning is thus

O

(
min

(
M,

N

B

)
· logσ M

)

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Analysis: Horizontal partitioning — I/O

1 Cache misses occur in lines 10-12 only:

If n ≥ N
B , then O

(
N
B

)
I/Os.

Else: O(n) I/Os

2 When does the change from n ≥ N
B to n < N

B occur?

3 Assuming uniformly random text, n = c ·M for some constant
c all the time! (all branches are open until the last iteration)

4 Suffix subtree construction from SA and LCP requires a single
scan(N) I/Os only and is omitted.

5 I/O complexity for horizontal partitioning is thus

O

(
min

(
M,

N

B

)
· logσ M

)

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Analysis: Horizontal partitioning — I/O

1 Cache misses occur in lines 10-12 only:

If n ≥ N
B , then O

(
N
B

)
I/Os.

Else: O(n) I/Os

2 When does the change from n ≥ N
B to n < N

B occur?

3 Assuming uniformly random text, n = c ·M for some constant
c all the time! (all branches are open until the last iteration)

4 Suffix subtree construction from SA and LCP requires a single
scan(N) I/Os only and is omitted.

5 I/O complexity for horizontal partitioning is thus

O

(
min

(
M,

N

B

)
· logσ M

)

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Analysis: Horizontal partitioning — I/O

1 Cache misses occur in lines 10-12 only:

If n ≥ N
B , then O

(
N
B

)
I/Os.

Else: O(n) I/Os

2 When does the change from n ≥ N
B to n < N

B occur?

3 Assuming uniformly random text, n = c ·M for some constant
c all the time! (all branches are open until the last iteration)

4 Suffix subtree construction from SA and LCP requires a single
scan(N) I/Os only and is omitted.

5 I/O complexity for horizontal partitioning is thus

O

(
min

(
M,

N

B

)
· logσ M

)

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Analysis: Horizontal partitioning — I/O

1 Cache misses occur in lines 10-12 only:

If n ≥ N
B , then O

(
N
B

)
I/Os.

Else: O(n) I/Os

2 When does the change from n ≥ N
B to n < N

B occur?

3 Assuming uniformly random text, n = c ·M for some constant
c all the time! (all branches are open until the last iteration)

4 Suffix subtree construction from SA and LCP requires a single
scan(N) I/Os only and is omitted.

5 I/O complexity for horizontal partitioning is thus

O

(
min

(
M,

N

B

)
· logσ M

)

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Analysis: Horizontal partitioning — I/O

1 Cache misses occur in lines 10-12 only:

If n ≥ N
B , then O

(
N
B

)
I/Os.

Else: O(n) I/Os

2 When does the change from n ≥ N
B to n < N

B occur?

3 Assuming uniformly random text, n = c ·M for some constant
c all the time! (all branches are open until the last iteration)

4 Suffix subtree construction from SA and LCP requires a single
scan(N) I/Os only and is omitted.

5 I/O complexity for horizontal partitioning is thus

O

(
min

(
M,

N

B

)
· logσ M

)

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Analysis: Horizontal partitioning — I/O

1 Cache misses occur in lines 10-12 only:

If n ≥ N
B , then O

(
N
B

)
I/Os.

Else: O(n) I/Os

2 When does the change from n ≥ N
B to n < N

B occur?

3 Assuming uniformly random text, n = c ·M for some constant
c all the time! (all branches are open until the last iteration)

4 Suffix subtree construction from SA and LCP requires a single
scan(N) I/Os only and is omitted.

5 I/O complexity for horizontal partitioning is thus

O

(
min

(
M,

N

B

)
· logσ M

)

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Wrap-up

Parallel time complexity of ERA (assuming σ ≤ M):

O

(
N logσ

N

M
+

(
N

M

)2

+
N

p
logσ M

)

Parallel cache complexity of ERA (assuming M ≥
√

N):

O

(
N

B
logσ

N

M
+

min
(
M, NB

)
· logσ M

p

)

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Wrap-up

Parallel time complexity of ERA (assuming σ ≤ M):

O

(
N logσ

N

M
+

(
N

M

)2

+
N

p
logσ M

)

Parallel cache complexity of ERA (assuming M ≥
√

N):

O

(
N

B
logσ

N

M
+

min
(
M, NB

)
· logσ M

p

)

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Empirical evaluation

Testing environment:

2x 16-core AMD Opteron 6272 @2,100 MHz

128 GiB RAM

Seagate Baracuda 250 GB, 7,200 RPM, 32 MiB cache, SATA

Ubuntu server 12.04, Linux kernel 3.11.0

ext4 file system, deadline I/O scheduler

ERA parameters:

Memory size per core: 2 GiB

Input text: Human genome HG18.txt, 2.8 Gbp

ERA modification: Call fsync() after writing each file.
ERA output:

Total suffix tree size: 77.3 GB stored in 187 files

Ttop size: 10.2 KB

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Empirical evaluation

Testing environment:

2x 16-core AMD Opteron 6272 @2,100 MHz

128 GiB RAM

Seagate Baracuda 250 GB, 7,200 RPM, 32 MiB cache, SATA

Ubuntu server 12.04, Linux kernel 3.11.0

ext4 file system, deadline I/O scheduler

ERA parameters:

Memory size per core: 2 GiB

Input text: Human genome HG18.txt, 2.8 Gbp

ERA modification: Call fsync() after writing each file.
ERA output:

Total suffix tree size: 77.3 GB stored in 187 files

Ttop size: 10.2 KB

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Results – 1

of proc.
0

1000

2000

3000

4000

5000

6000

7000

ti
m

e
 [

s]

ERA execution time per # of CPUs

of proc.
0

1

2

3

4

5

sp
e
e
d
u
p

ERA speedup per # of CPUs

5 10 15 20 25 30 35
of proc.

0.0

0.2

0.4

0.6

0.8

1.0

e
ff

ic
ie

n
cy

ERA efficiency per # of CPUs

The time increases as we increase the number of cores.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Results – 1

of proc.
0

1000

2000

3000

4000

5000

6000

7000

ti
m

e
 [

s]

ERA execution time per # of CPUs

of proc.
0

1

2

3

4

5

sp
e
e
d
u
p

ERA speedup per # of CPUs

5 10 15 20 25 30 35
of proc.

0.0

0.2

0.4

0.6

0.8

1.0

e
ff

ic
ie

n
cy

ERA efficiency per # of CPUs

The time increases as we increase the number of cores.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Results – 2

So what is the machine doing?

string cpy Parsing and copying the string.

vertpart Vertical partitioning.

cnt1, cnt* Horizontal partitioning: determining locations of
S-prefix in virtual trees of size 1 or > 1.

filbuf Horizontal partitioning: reading range characters
from S-prefix locations.

sort Horizontal partitioning: string sorting, implicit LCP,
SA construction.

write Horizontal partitioning: extraction from LCP and SA
to suffix tree, write to disk.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Results – 2

So what is the machine doing?

string cpy Parsing and copying the string.

vertpart Vertical partitioning.

cnt1, cnt* Horizontal partitioning: determining locations of
S-prefix in virtual trees of size 1 or > 1.

filbuf Horizontal partitioning: reading range characters
from S-prefix locations.

sort Horizontal partitioning: string sorting, implicit LCP,
SA construction.

write Horizontal partitioning: extraction from LCP and SA
to suffix tree, write to disk.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Results – 2 contd.

0 1000 2000 3000 4000 5000 6000
time [s]

0.0

0.2

0.4

0.6

0.8

1.0

w
o
rk

/s

p = 1, t=5972.0s, s=p00

string cpy=0s
vertpart=132s
cnt1=62s
cnt*=2284s
filbuf=709s
sort=1516s
write=1257s

0 500 1000 1500 2000 2500 3000 3500
time [s]

0.0

0.5

1.0

1.5

2.0

w
o
rk

/s

p = 2, t=3463.0s, s=p00

string cpy=68s
vertpart=133s
cnt1=63s
cnt*=2346s
filbuf=828s
sort=1662s
write=1360s

0 500 1000 1500 2000 2500 3000
time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

w
o
rk

/s

p = 3, t=2507.0s, s=p00

string cpy=71s
vertpart=133s
cnt1=64s
cnt*=2367s
filbuf=841s
sort=1754s
write=1545s

0 500 1000 1500 2000 2500
time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

w
o
rk

/s

p = 4, t=2033.0s, s=p00

string cpy=71s
vertpart=133s
cnt1=64s
cnt*=2371s
filbuf=843s
sort=1721s
write=1952s

0 200 400 600 80010001200140016001800
time [s]

0

1

2

3

4

5

6

w
o
rk

/s

p = 6, t=1678.0s, s=p00

string cpy=73s
vertpart=140s
cnt1=65s
cnt*=2454s
filbuf=886s
sort=1835s
write=2868s

0 200 400 600 800 1000 1200 1400
time [s]

0

1

2

3

4

5

6

7

8

w
o
rk

/s

p = 8, t=1398.0s, s=p00

string cpy=86s
vertpart=140s
cnt1=65s
cnt*=2477s
filbuf=916s
sort=1793s
write=3705s

0 200 400 600 800 1000 1200 1400
time [s]

0

2

4

6

8

10

12

w
o
rk

/s

p = 12, t=1303.0s, s=p00

string cpy=69s
vertpart=166s
cnt1=73s
cnt*=2746s
filbuf=962s
sort=2049s
write=6375s

0 200 400 600 800 1000 1200 1400
time [s]

0

2

4

6

8

10

12

14

16

w
o
rk

/s

p = 16, t=1243.0s, s=p00

string cpy=67s
vertpart=166s
cnt1=76s
cnt*=2813s
filbuf=1002s
sort=2080s
write=8645s

0 200 400 600 800 1000 1200 1400
time [s]

0

5

10

15

20

w
o
rk

/s

p = 20, t=1316.0s, s=p00

string cpy=65s
vertpart=180s
cnt1=77s
cnt*=2876s
filbuf=1043s
sort=2173s
write=12155s

0 200 400 600 800 1000 1200 1400
time [s]

0

5

10

15

20

25

w
o
rk

/s

p = 24, t=1255.0s, s=p00

string cpy=67s
vertpart=178s
cnt1=88s
cnt*=3045s
filbuf=1217s
sort=2421s
write=15203s

0 200 400 600 800 1000 1200 1400
time [s]

0

5

10

15

20

25

30
w

o
rk

/s
p = 28, t=1295.0s, s=p00

string cpy=67s
vertpart=188s
cnt1=98s
cnt*=3151s
filbuf=1425s
sort=2607s
write=17368s

0 200 400 600 800 1000 1200 1400
time [s]

0

5

10

15

20

25

30

35

w
o
rk

/s

p = 32, t=1306.0s, s=p00

string cpy=73s
vertpart=193s
cnt1=98s
cnt*=3232s
filbuf=1617s
sort=2821s
write=20007s

parallel10_devnullprobability CPU times p00

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Results – 2 contd.

0 1000 2000 3000 4000 5000 6000
0

50

100

150

200

250
p = 1, t=5972.0s

rMB/s
avg: 0.47
wMB/s
avg: 13.09

await [cs]
avg: 17.51
avg. queue sz
avg: 17.94

0 500 1000 1500 2000 2500 3000 3500

p = 2, t=3463.0s

rMB/s
avg: 0.74
wMB/s
avg: 22.36

await [cs]
avg: 26.77
avg. queue sz
avg: 30.73

0 500 1000 1500 2000 2500 3000

p = 3, t=2507.0s

rMB/s
avg: 1.07
wMB/s
avg: 30.87

await [cs]
avg: 34.04
avg. queue sz
avg: 42.73

0 500 1000 1500 2000 2500

p = 4, t=2033.0s

rMB/s
avg: 1.31
wMB/s
avg: 37.95

await [cs]
avg: 40.45
avg. queue sz
avg: 54.7

0 200 400 600 80010001200140016001800
0

50

100

150

200

250
p = 6, t=1678.0s

rMB/s
avg: 1.62
wMB/s
avg: 46.48

await [cs]
avg: 47.66
avg. queue sz
avg: 69.74

0 200 400 600 800 1000 1200 1400

p = 8, t=1398.0s

rMB/s
avg: 1.8
wMB/s
avg: 55.31

await [cs]
avg: 55.35
avg. queue sz
avg: 84.89

0 200 400 600 800 1000 1200 1400

p = 12, t=1303.0s

rMB/s
avg: 2.25
wMB/s
avg: 59.11

await [cs]
avg: 65.77
avg. queue sz
avg: 100.25

0 200 400 600 800 1000 1200 1400

p = 16, t=1243.0s

rMB/s
avg: 2.26
wMB/s
avg: 62.23

await [cs]
avg: 65.09
avg. queue sz
avg: 105.2

0 200 400 600 800 1000 1200 1400
0

50

100

150

200

250
p = 20, t=1316.0s

rMB/s
avg: 2.24
wMB/s
avg: 58.35

await [cs]
avg: 66.5
avg. queue sz
avg: 101.92

0 200 400 600 800 1000 1200 1400

p = 24, t=1255.0s

rMB/s
avg: 2.32
wMB/s
avg: 61.07

await [cs]
avg: 67.97
avg. queue sz
avg: 106.73

0 200 400 600 800 1000 1200 1400

p = 28, t=1295.0s

rMB/s
avg: 1.97
wMB/s
avg: 59.63

await [cs]
avg: 66.98
avg. queue sz
avg: 102.55

0 200 400 600 800 1000 1200 1400

p = 32, t=1306.0s

rMB/s
avg: 2.31
wMB/s
avg: 60.06

await [cs]
avg: 64.75
avg. queue sz
avg: 101.16

parallel10_devnullprobability iostat p00

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Results – 2 contd.

0 1000 2000 3000 4000 5000 6000
0

20

40

60

80

100

120

140
p = 1, t=5972.0s

user=80.27%
system=8.93%
I/O wait=17.24%

0 500 1000 1500 2000 2500 3000 3500
0

20

40

60

80

100

120

140

160
p = 2, t=3463.0s

user=78.61%
system=10.19%
I/O wait=15.92%

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

140
p = 3, t=2507.0s

user=76.77%
system=9.69%
I/O wait=16.04%

0 500 1000 1500 2000 2500
0

20

40

60

80

100

120

140
p = 4, t=2033.0s

user=72.17%
system=9.22%
I/O wait=17.14%

0 200 400 600 80010001200140016001800
0

20

40

60

80

100

120

140
p = 6, t=1678.0s

user=65.37%
system=7.95%
I/O wait=19.3%

0 200 400 600 800 1000 1200 1400
0

20

40

60

80

100

120

140
p = 8, t=1398.0s

user=62.88%
system=7.12%
I/O wait=21.41%

0 200 400 600 800 1000 1200 1400
0

20

40

60

80

100

120
p = 12, t=1303.0s

user=54.87%
system=5.69%
I/O wait=21.64%

0 200 400 600 800 1000 1200 1400
0

20

40

60

80

100

120
p = 16, t=1243.0s

user=48.58%
system=4.78%
I/O wait=19.28%

0 200 400 600 800 1000 1200 1400
0

20

40

60

80

100

120
p = 20, t=1316.0s

user=41.93%
system=3.8%
I/O wait=17.86%

0 200 400 600 800 1000 1200 1400
0

20

40

60

80

100

120
p = 24, t=1255.0s

user=41.72%
system=4.13%
I/O wait=17.13%

0 200 400 600 800 1000 1200 1400
0

20

40

60

80

100

120
p = 28, t=1295.0s

user=38.82%
system=4.03%
I/O wait=14.91%

0 200 400 600 800 1000 1200 1400
0

20

40

60

80

100

120
p = 32, t=1306.0s

user=37.62%
system=4.05%
I/O wait=12.25%

parallel10_devnullprobability mpstat p00

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Hypotheis 1

Observation 1: The majority of time is spent writing the final
result to the disk.

Hypothesis 1: Problem is the disk performance, so replace HDD
with SSD.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Hypotheis 1

Observation 1: The majority of time is spent writing the final
result to the disk.

Hypothesis 1: Problem is the disk performance, so replace HDD
with SSD.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Results – 3

0 1000 2000 3000 4000 5000 6000
time [s]

0.0

0.2

0.4

0.6

0.8

1.0

w
o
rk

/s

p = 1, t=5657.0s, s=p00

string cpy=0s
vertpart=132s
cnt1=62s
cnt*=2296s
filbuf=735s
sort=1689s
write=731s

0 500 1000 1500 2000 2500 3000 3500
time [s]

0.0

0.5

1.0

1.5

2.0

w
o
rk

/s

p = 2, t=3068.0s, s=p00

string cpy=39s
vertpart=132s
cnt1=62s
cnt*=2309s
filbuf=787s
sort=1715s
write=745s

0 500 1000 1500 2000 2500
time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

w
o
rk

/s

p = 3, t=2183.0s, s=p00

string cpy=41s
vertpart=132s
cnt1=63s
cnt*=2337s
filbuf=819s
sort=1772s
write=809s

0 200 400 600 80010001200140016001800
time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

w
o
rk

/s

p = 4, t=1700.0s, s=p00

string cpy=41s
vertpart=133s
cnt1=64s
cnt*=2350s
filbuf=830s
sort=1735s
write=872s

0 200 400 600 800 1000 1200 1400
time [s]

0

1

2

3

4

5

6

w
o
rk

/s

p = 6, t=1304.0s, s=p00

string cpy=45s
vertpart=141s
cnt1=66s
cnt*=2464s
filbuf=875s
sort=1855s
write=1051s

0 200 400 600 800 1000 1200
time [s]

0

1

2

3

4

5

6

7

8

w
o
rk

/s

p = 8, t=1049.0s, s=p00

string cpy=44s
vertpart=141s
cnt1=68s
cnt*=2476s
filbuf=904s
sort=1874s
write=1169s

0 100 200 300 400 500 600 700 800 900
time [s]

0

2

4

6

8

10

12

w
o
rk

/s

p = 12, t=898.0s, s=p00

string cpy=46s
vertpart=165s
cnt1=77s
cnt*=2859s
filbuf=992s
sort=2115s
write=1554s

0 100 200 300 400 500 600 700 800 900
time [s]

0

2

4

6

8

10

12

14

16

w
o
rk

/s

p = 16, t=804.0s, s=p00

string cpy=45s
vertpart=166s
cnt1=79s
cnt*=2878s
filbuf=1079s
sort=2177s
write=2230s

0 100 200 300 400 500 600 700 800 900
time [s]

0

5

10

15

20

w
o
rk

/s

p = 20, t=826.0s, s=p00

string cpy=48s
vertpart=171s
cnt1=81s
cnt*=2948s
filbuf=1083s
sort=2209s
write=3777s

0 100 200 300 400 500 600 700 800
time [s]

0

5

10

15

20

25

w
o
rk

/s

p = 24, t=772.0s, s=p00

string cpy=48s
vertpart=176s
cnt1=87s
cnt*=3086s
filbuf=1221s
sort=2363s
write=4773s

0 100 200 300 400 500 600 700 800 900
time [s]

0

5

10

15

20

25

30
w

o
rk

/s
p = 28, t=801.0s, s=p00

string cpy=49s
vertpart=187s
cnt1=93s
cnt*=3233s
filbuf=1412s
sort=2476s
write=5579s

0 100 200 300 400 500 600 700 800
time [s]

0

5

10

15

20

25

30

35

w
o
rk

/s

p = 32, t=790.0s, s=p00

string cpy=49s
vertpart=191s
cnt1=96s
cnt*=3389s
filbuf=1712s
sort=2709s
write=6427s

parallel10_devnullprobability_ssd CPU times p00

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Hypotheis 2

Observation 2: The amount of time for writting decreased, but as
the number of cores grows, it is still substantial.

Hypothesis 2: There it is still a problem with a disk performance
and consequently further speed-up disk by writting to /dev/null.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Hypotheis 2

Observation 2: The amount of time for writting decreased, but as
the number of cores grows, it is still substantial.

Hypothesis 2: There it is still a problem with a disk performance
and consequently further speed-up disk by writting to /dev/null.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Results – 4

5 10 15 20 25 30 35
of proc.

0

1000

2000

3000

4000

5000

6000

7000

ti
m

e
 [

s]

probability = 0.0

5 10 15 20 25 30 35
of proc.

ti
m

e
 [

s]

probability = 0.1

5 10 15 20 25 30 35
of proc.

ti
m

e
 [

s]

probability = 0.2

5 10 15 20 25 30 35
of proc.

ti
m

e
 [

s]

probability = 0.3

5 10 15 20 25 30 35
of proc.

0

1000

2000

3000

4000

5000

6000

7000

ti
m

e
 [

s]

probability = 0.4

5 10 15 20 25 30 35
of proc.

ti
m

e
 [

s]

probability = 0.5

5 10 15 20 25 30 35
of proc.

ti
m

e
 [

s]

probability = 0.6

5 10 15 20 25 30 35
of proc.

ti
m

e
 [

s]

probability = 0.7

5 10 15 20 25 30 35
of proc.

0

1000

2000

3000

4000

5000

6000

7000

ti
m

e
 [

s]

probability = 0.8

5 10 15 20 25 30 35
of proc.

ti
m

e
 [

s]

probability = 0.9

5 10 15 20 25 30 35
of proc.

ti
m

e
 [

s]

probability = 1.0

0.0 0.2 0.4 0.6 0.8 1.0

times per # of proc., /dev/null prob. wise

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Results – 4 contd.

0 1000 2000 3000 4000 5000 6000
time [s]

0.0

0.2

0.4

0.6

0.8

1.0

w
o
rk

/s

p = 1, t=5178.0s, s=p10

string cpy=0s
vertpart=132s
cnt1=63s
cnt*=2332s
filbuf=836s
sort=1533s
write=269s

0 500 1000 1500 2000 2500 3000
time [s]

0.0

0.5

1.0

1.5

2.0

w
o
rk

/s

p = 2, t=2794.0s, s=p10

string cpy=69s
vertpart=133s
cnt1=64s
cnt*=2308s
filbuf=769s
sort=1615s
write=271s

0 500 1000 1500 2000 2500
time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

w
o
rk

/s

p = 3, t=2030.0s, s=p10

string cpy=70s
vertpart=134s
cnt1=64s
cnt*=2337s
filbuf=830s
sort=1729s
write=278s

0 200 400 600 800 1000120014001600
time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

w
o
rk

/s

p = 4, t=1556.0s, s=p10

string cpy=69s
vertpart=133s
cnt1=66s
cnt*=2346s
filbuf=829s
sort=1700s
write=269s

0 200 400 600 800 1000 1200
time [s]

0

1

2

3

4

5

6

w
o
rk

/s

p = 6, t=1175.0s, s=p10

string cpy=64s
vertpart=140s
cnt1=66s
cnt*=2481s
filbuf=882s
sort=1859s
write=293s

0 200 400 600 800 1000
time [s]

0

1

2

3

4

5

6

7

8

w
o
rk

/s

p = 8, t=941.0s, s=p10

string cpy=63s
vertpart=140s
cnt1=67s
cnt*=2484s
filbuf=909s
sort=1823s
write=299s

0 100 200 300 400 500 600 700 800 900
time [s]

0

2

4

6

8

10

12

w
o
rk

/s

p = 12, t=804.0s, s=p10

string cpy=69s
vertpart=165s
cnt1=80s
cnt*=2965s
filbuf=1026s
sort=2189s
write=339s

0 100 200 300 400 500 600 700 800
time [s]

0

2

4

6

8

10

12

14

16

w
o
rk

/s

p = 16, t=717.0s, s=p10

string cpy=72s
vertpart=167s
cnt1=80s
cnt*=2959s
filbuf=1068s
sort=2201s
write=343s

0 100 200 300 400 500 600 700
time [s]

0

5

10

15

20

w
o
rk

/s

p = 20, t=663.0s, s=p10

string cpy=66s
vertpart=180s
cnt1=85s
cnt*=3090s
filbuf=1123s
sort=2343s
write=342s

0 100 200 300 400 500 600 700
time [s]

0

5

10

15

20

25

w
o
rk

/s

p = 24, t=604.0s, s=p10

string cpy=67s
vertpart=184s
cnt1=89s
cnt*=3306s
filbuf=1365s
sort=2628s
write=367s

0 100 200 300 400 500 600 700
time [s]

0

5

10

15

20

25

30
w

o
rk

/s
p = 28, t=609.0s, s=p10

string cpy=67s
vertpart=188s
cnt1=109s
cnt*=3364s
filbuf=1457s
sort=2824s
write=375s

0 100 200 300 400 500 600 700
time [s]

0

5

10

15

20

25

30

35

w
o
rk

/s

p = 32, t=645.0s, s=p10

string cpy=68s
vertpart=192s
cnt1=111s
cnt*=3557s
filbuf=1954s
sort=3011s
write=384s

parallel10_devnullprobability CPU times p10

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Hypotheis 3

Observation 3: Things are getting better, but there is still an
increase in time when the number of cores is increased.

Hypothesis 3: ??

Check in more detail what the processes are doing.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Hypotheis 3

Observation 3: Things are getting better, but there is still an
increase in time when the number of cores is increased.

Hypothesis 3: ??

Check in more detail what the processes are doing.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Results – 5 (p = 16)

0 200 400 600 800 1000 1200

time [s]
0

2

4

6

8

10

12

14

16

w
o
rk

/s

p = 16, t=1243.0

string cpy=67s
vertpart=166s
cnt1=76s
cnt*=2813s
filbuf=1002s
sort=2080s
write=8645s

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

parallel10_devnullprobability CPU times per CPU, p00

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Results – 5 (p = 16), strace

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Results – 5 (p = 32)

0 200 400 600 800 1000 1200

0

5

10

15

20

25

30

35

w
o
rk

/s

p = 32, t=1306.0

string cpy=73s
vertpart=193s
cnt1=98s
cnt*=3232s
filbuf=1617s
sort=2821s
write=20007s

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

parallel10_devnullprobability CPU times per CPU, p00

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Results – 5 (p = 32), strace

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Conclusion

Huge gap between the theoretical time and I/O asymptotically
tight algorithms and the practical ones.

ERA despite being practically the fastest algorithm is not
theoretically tight even for random input strings with
uniform substring distribution.

Open challenges:

Analyse ERA bottlenecks for further improvements (see if they
match the critical terms in time and I/O complexities).

Shall we choose some other basic technique for the
implementation of a practical algorithm?

Design a theoretically tight yet practically competitive parallel
algorithm for suffix tree construction.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Conclusion

Huge gap between the theoretical time and I/O asymptotically
tight algorithms and the practical ones.

ERA despite being practically the fastest algorithm is not
theoretically tight even for random input strings with
uniform substring distribution.

Open challenges:

Analyse ERA bottlenecks for further improvements (see if they
match the critical terms in time and I/O complexities).

Shall we choose some other basic technique for the
implementation of a practical algorithm?

Design a theoretically tight yet practically competitive parallel
algorithm for suffix tree construction.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Conclusion

Huge gap between the theoretical time and I/O asymptotically
tight algorithms and the practical ones.

ERA despite being practically the fastest algorithm is not
theoretically tight even for random input strings with
uniform substring distribution.

Open challenges:

Analyse ERA bottlenecks for further improvements (see if they
match the critical terms in time and I/O complexities).

Shall we choose some other basic technique for the
implementation of a practical algorithm?

Design a theoretically tight yet practically competitive parallel
algorithm for suffix tree construction.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Conclusion

Huge gap between the theoretical time and I/O asymptotically
tight algorithms and the practical ones.

ERA despite being practically the fastest algorithm is not
theoretically tight even for random input strings with
uniform substring distribution.

Open challenges:

Analyse ERA bottlenecks for further improvements (see if they
match the critical terms in time and I/O complexities).

Shall we choose some other basic technique for the
implementation of a practical algorithm?

Design a theoretically tight yet practically competitive parallel
algorithm for suffix tree construction.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Conclusion

Huge gap between the theoretical time and I/O asymptotically
tight algorithms and the practical ones.

ERA despite being practically the fastest algorithm is not
theoretically tight even for random input strings with
uniform substring distribution.

Open challenges:

Analyse ERA bottlenecks for further improvements (see if they
match the critical terms in time and I/O complexities).

Shall we choose some other basic technique for the
implementation of a practical algorithm?

Design a theoretically tight yet practically competitive parallel
algorithm for suffix tree construction.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Conclusion

Huge gap between the theoretical time and I/O asymptotically
tight algorithms and the practical ones.

ERA despite being practically the fastest algorithm is not
theoretically tight even for random input strings with
uniform substring distribution.

Open challenges:

Analyse ERA bottlenecks for further improvements (see if they
match the critical terms in time and I/O complexities).

Shall we choose some other basic technique for the
implementation of a practical algorithm?

Design a theoretically tight yet practically competitive parallel
algorithm for suffix tree construction.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Conclusion

Huge gap between the theoretical time and I/O asymptotically
tight algorithms and the practical ones.

ERA despite being practically the fastest algorithm is not
theoretically tight even for random input strings with
uniform substring distribution.

Open challenges:

Analyse ERA bottlenecks for further improvements (see if they
match the critical terms in time and I/O complexities).

Shall we choose some other basic technique for the
implementation of a practical algorithm?

Design a theoretically tight yet practically competitive parallel
algorithm for suffix tree construction.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Thank you.

Matevž Jekovec
matevz.jekovec@fri.uni-lj.si

Laboratorij za vseprisotne sisteme
Laboratory for Ubiquitous SYstems

LUSY
http://lusy.fri.uni-lj.si

Andrej Brodnik
andrej.brodnik@fri.uni-lj.si

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Extra — List of all experiments

Shown at the presentation:

Execution time for different p, speed-up, efficiency.

CPU times, iostat and mpstat per different phases for
p = {1, 2, 3, 4, 6, 8, 12, 16, 20, 24, 27, 32}.
iostat output for various p.

mpstat output for various p.

Work per core for single execution for p = 32.

Using strace, fetching read, write, lseek syscalls.

Introduction Design goals ERA Formal analysis Empirical evaluation Conclusion

Extra — List of all experiments contd.

Test scenarios:

Original code + added fsync(), various # of cores, various
mem. size per core.

Various string buffer sizes BUF TYPE= {8, 16, 32, 64} bit.

Integration of Multikey cached quicksort
(Rantala-Bentley-Sedgewick) instead of GNU qsort.

Maximum limit of simultaneously opened files for writing
F = {1, 2, 3, 4, 5, 6, 12, 16}.
Output to /dev/null with probability Pr = [0, 0.1...1].

Separated disk for writing and reading.

SSD for reading and/or writing.

Different file system schedulers: noop, default, cfq.

Different file system max queue length.

Output to raw device without file system.

Execution on 12x Raspberry π with shared NFS storage.

	Introduction
	Text indexing problem
	Suffix tree construction times
	Suffix tree construction lower bounds

	Design goals
	Challenges

	ERA
	Overview
	Vertical partitioning
	Horizontal partitioning

	Formal analysis
	Model of computation
	Assumptions
	Analysis
	Wrapup

	Empirical evaluation
	Testing environment
	Results 1
	Results 2
	Results 3
	Results 4
	Results 5

	Conclusion

