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Abstract. Modern storage systems such as distributed file systems and
key-value stores in many cases exhibit data redundancy. The issue is
addressed by deduplication, a process of identifying and eliminating du-
plicate data. While deduplication is typically applied to data stored on
disks, the emergence of RAM-based storage systems opens new prob-
lems on one hand while being insensitive to some inherent deficiencies of
deduplication such as fragmentation. In this paper we present a review
of disk- and memory-based deduplication.

1 Introduction

Deduplication (also called redundancy elimination) is a process of identifying and
eliminating redundancy in data. Storage systems handle ever increasing volumes
of data. However, much of the stored information is duplicate (redundant) data
[12]. Often whole files are duplicated in enterprise and cloud environments, while
subfile-level redundancy is also common. Not only is storage space preserved. In
light of cloud-based services and inter-connectivity, large amounts of data are
moved accross networks all over the world. If redundancy could be eliminated,
network bandwidth would be preserved [25].

The paper is organized as follows. In section 2, deduplication basics, including
types and basic tools, are presented. Section 3 covers techniques for disk-based
data deduplication. Techniques are grouped into hash-based, similarity-based
and hybrid as described in section 2.1. Additionaly, work specific to virtualization
environments is presented in section 3.4. Deduplication techniques for memory-
based data are presented in section 4. In section 5 we conclude and present our
future work in a way to provide a clear distinction with the reviewed papers.

2 Deduplication Basics

2.1 Deduplication Types

Inline deduplication (also called online) is typically done in the following
steps:

1. Data being written to the storage system is analyzed to detect redundancy
with respect to data already stored in the system.



2. Redundancy is removed and non-redundant data is written to the system.
Data structures holding deduplication metadata are updated accordingly.

In contrast, with offline deduplication new data is first written to the system,
and then deduplication (redundancy detection and elimination) is done on data
“at rest” in batch. Downside to offline deduplication is the need for temporary
storage where redundant data is stored before it is deduplicated. Upside is better
performance, since deduplication can be performed in background when user
access to the data is minimal (eg. during the night).

Redundancy detection and elimination can roughly be divided to hash-
based deduplication and similarity-based deduplication. The emphasis
of the first approach is not on using hash functions (despite the name), but on
identifying redundant data by exact-matching segments using their hash values.
The second approach (sometimes called resemblace-based) also uses hash values
of data segments, but combines them with other information to form similarity
signatures, which results in non-exact approrimate matching. This is used in one
of two ways:

1. Approximately matched similar data is delta encoded.

2. Non-exact similarity matches are faster and therefore used to create multi-
tier data structures, where similarity matching is done in the first phase
on metadata representing the whole data set and in the second phase used
to direct exact-matching on finer granularity. This improves deduplication
ratios without increase in computational complexity, which would happen
if fine-grained exact matching would be run on large amount of data. An
example is Extreme binning approach described in [3].

Hybrid approaches where also proposed and three of them are described later
[16,3,32]. In hybrid schemes entropy encoding lossless compression is often ap-
plied in addition to other techniques.

Basic idea of delta encoding (also called differential compression) is to encode
one data object as a set of differences (deltas) with regards to other data objects.
The main issue with using this technique for deduplication is how to find similar
objects so that the compression will be as optimal as possible. This is the reason
why this technique is popular in revision control systems and archival tools such
as rsync, where reference files are usually identified by same or similar names,
or are made explicit by the nature of the application (files as versions of each
other).

Another division could be made between file-level deduplication and subfile-
level (sometimes called block-level) deduplication. The first approach is a simple
one but effective in certain scenarios [5], especially cloud stores, where many files
are stored multiple times. Note, a file is not necessarily a POSIX file but any unit
of storage with respect to the storage API. For example, single memory page in
memory deduplication (see 4). Authors in [21] collected file system contents from
857 desktop machines at Microsoft over 4 weeks. Testing showed that file-level
deduplication achieves about three quarters of the space savings of the most
aggressive block-level deduplication for storage of live file systems, and nearly
90% of the savings for backup images.



2.2 Basic Tools

Broder [6] defined notions of resemblance (similarity) and containment between
two data objects. The basic idea is to sample objects into sketches and then
compute resemblance or containment using sketches.

Rabin fingerprint [28] is a type of a rolling hash function. The name comes
from the fact they are used for hashing overlapping regions of data by sliding
(rolling) a window over the data. Any hash function could be used for this,
but rolling hashes allow faster computation of the new hash value when byte
sequences overlap. New hash value can be computed efficiently given only the
old hash value, the bits that were removed from and added to the window.

Problem often found in deduplication is how to divide data into parts called
segments or chunks (the two terms are used interchangeably), from which the
metadata describing these segments is created. This metadata is stored in a
structure which often called segment index. One could segment the data into
fixed-length segments. However, a simple byte insertion or deletion causes many
segments to shift, which is a problem, since in hash-based deduplication seg-
ments are checked for exact matching by hashing. To overcome this a solution
to the problem of shifting segment boundaries is proposed in [20]. The approach
proposes using variable-length segments whose boundaries are selected based on
data contents. This approach is also known as anchoring (see Figure 1). A rolling

Fixed Width Sliding Window
=]

Previous Chunk . >

Chunk|l fmodD=r f mod D = r! Chunk
Boundary Boundary

Fig. 1. Anchoring.

checksum (Rabin fingerprint) is computed over a k-byte window which is slided
byte by byte through the data. Whenever the lower d bits of the hash equal a
specific value r (f =7 (mod 2%)), the k-byte region is marked as a boundary.
The value D = 2¢ is the divisor and r is the remainder. Assuming uniformly
random data, this will happen every 2¢ bytes which is the expected average
size of a segment. Pathological cases do exist. For example, a long sequence of
zero bits would never match a boundary condition. Conversely, k-byte segments
all matching the boundary condition could be near each other, thus producing
small-size segments. This is usually addressed by setting the minimum and max-
imum segment sizes as proposed in [25]. If a boundary is found sooner than the
minimum size it is skipped. If the boundary is not found when scanning the max-



imum boundary size bytes, a region is selected even if not matching boundary
conditions.

To improve the basic anchoring technique a TTTD (two thresholds two di-
visor) approach was proposed [24]. TTTD finds variable-length segments with
smaller length variation than the original anchoring technique. As the name
suggests, the algorithm use two thresholds two determine the minimum and
maximum sizes of chunks. This is was already proposed in [25]. However, this
approach adds a second divisor which is roughly half the size of the main divisor.
The second divisor is used to find backup boundaries in case the main divisor
fails to do so.

A Bloom filter [4] is a probabilistic data structure used to support set mem-
bership queries. They are useful in the context of deduplication, since data struc-
tures storing deduplication metadata are often too large to fit into main memory,
so disk 1O is necessary. Bloom filter-based structures are designed so that they
fit into RAM.

3 Disk Data Deduplication

We present several deduplication techniques used of redundancy elimination in
disk-based data. This does not mean such techniques cannot be used on memory
data.

3.1 Hash-based Techniques

Venti [27] is a block-based write-once storage system, developed as part of
the Plan 9 OS from Bell Labs in 2002. Blocks of data are addressed by their
fingerprints, which makes Venti a content-addressable storage (CAS). As such,
Venti exhibits implicit block-level deduplication, since the same block of data is
stored only once. More complex storage services can be build on top of Venti.
For example, to store a sequence of blocks (which can represent a file), hashes
(addresses) of the blocks in the sequence need to be stored. Venti can be used
to store them in the so called “pointer” blocks, which are blocks consisting of a
fixed-number of hashes of other blocks. Since only a limited amount of hashes
fit into a single block, this process is repeated recursively resulting in a hash
(Merkle) tree structure.

Authors in [25] present LBFS, a low-bandwidth file system. LBFS provides
the same semantics as well-known network file systems such as NFS or AFS, but
uses less network bandwidth to transmit changes between clients and servers.
This is achieved by heavy client-side caching and variable-length hash-based
deduplication. This is also an early example of using deduplication as one of
core WAN optimization techniques. In this case it is specific to the application
layer protocol, but WAN optimization devices do the same when deduplicating
network packet payloads.

Problem addressed by LBFS is related to the problem addressed by rsync
[29]. However, rsync only needs to compare two files at a time for similarities
which makes the problem easier.



The author [31] presents a technique for optimizing web browsing over slow
links. He proposes using delta encoding where the client and the server maintain
caches of data objects. When the client wants to retrieve a certain object, the
server delta encodes this object using objects that are already in the client’s cache
as references. A heuristic based on URLs is used to decide on object similarity.

Probably the most cited approach to storage deduplication is described in
[34]. Authors present the usage of Bloom filters which has since become stan-
dard. The system breaks data into segments using anchoring to produce variable-
length content-dependent segments. Segment descriptors are computed that con-
tain SHA-1 fingerprint of the segment, its size and some optional information.
A mapping between data objects and segment descriptors is then created. Au-
thors do not go into details, except to explain that some kind of tree is used
for the mapping. This is possibly due to commercial use of the scheme. Three
acceleration methods are used. First, a summary vector, an in-memory structure
to reduce disk IO when searching for segments. Summary vector is implemented
with a Bloom filter and reduces on-disk segment index accesses when a segment
is not duplicated (false positives are possible, but are rare). Second, locality
preserved caching is implemented. To further reduce on-disk segment index ac-
cesses, LPC cache groups together segment descriptors using stream-informed
segment layout. So whenever a retrieval from the segment index is made, a group
of segment descriptors is transfered to cache. Third, a stream-informed segment
layout is used, which ensures that spatial locality of segments is preserved. This
means the segments are stored on disk in the same order in which they appeared
in the workload. This reduces the impact of inherent fragmentation caused by
deduplication.

Fragmentation is also addressed in [15]. Authors tweak the inline deduplica-
tion system for backup workloads, by “shifting” fragmentation to older backup
data.

Researchers at HP Labs proposed sparse indexing [18], a technique to cope
with on-disk segment index access problem. Instead of using a solution based
on Bloom filter similar to the summary vector from [34], they divide the input
data stream into sequences of chunks which they call segments, although in other
literature, these two notions are the same. They use the TTTD approach [24] for
finding segment boundaries, but this is now applied to chunks of bytes instead
of single bytes. Each segment is compared for deduplication only with a few of
the most similar previous segments. Similarity is identified by deterministicaly
sampling a few chunks from within the segment, thus creating a sparse index.

ChunkStash [10] approach stores segment fingerprints on an SSD disk instead
of HDD. Cuckoo hashing is used to organize the segment index in RAM. Eval-
uation of the approach shows that the disk-based scheme performs comparable
to the flash-based scheme when there is sufficient locality in the data stream.

Improvements to hash-based deduplication are described in [23]. Authors
optimize segment boundary search (anchoring) by improving Rabin’s rolling hash
algorithm. Additionally, segment index lookup is improved by exploiting access
locality.



3.2 Similarity-based Techniques

Several approaches were proposed on how to use delta encoding and similarity
detection together, sometimes called DERD (delta encoding with resemblance
detection).

According to technique described in [11], large filesets are first divided into
clusters. The intent is to group files expected to bear some resemblance. This
can be achieved by grouping files according to a variety of criteria including
names, sizes, or fingerprints. Authors used name-based clusters to make the
processing of a large fileset efficient with regards to memory consumption. Once
files are clustered, quadratic complexity techniques can be used to identify good
candidate pairs for delta-encoding within each cluster.

Authors in [2] present a similarity-based technique. Since there is no exact
matching by hashing, larger segments of data can be used to check for similarities.
Similarity signatures are computed to identify possibly similar blocks. A rolling
hash is computed with 512-byte sliding window. 4 of the 512-byte subsegments
with the largest hash value are selected. Since these hash values are not uniform,
they cannot be used as signatures. However, the locations of these 4 512-byte
subsegments (they can overlap, but unlikely) are used, shifted by a small amount
of bytes, and the hash values of the 4 subsegments starting at this locations are
used as signature of the whole segment. The shifting is neccessary to achieve
uniform distribution of the 4 hashes. However, no details regarding the index
structure are provided, possibly due to commercial use.

3.3 Hybrid Techniques

Paper [16] presents REBL (redundancy elimination at the block level) scheme
which combines block-level deduplication (called duplicate block suppression),
delta encoding and compression. It is an improvement to the approach from [11]
where authors only consider file-level granularity. The algorithm first applies
variable-length segment deduplication and then performs resemblance detection
on the remaining blocks to identify sufficiently similar blocks on which delta
encoding can be used. This makes it possible to efficiently encode segments that
differ only slightly, but enough that they are not deduplicated with the block
suppression approach. Resemblance detection is optimized by using superfin-
gerprints, which are calculated from sets of segment fingerprints, thus reducing
fingerprint index size while retaining high resemblance detection. Blocks that
aren’t handled by any of the above procedure are simply compressed.

Extreme binning [3] technique exploits file similarities in order to dedupli-
cate non-traditional workloads which exhibit low locality. The idea is to store a
similarity index of every new file in main memory. This is called a first tier index
and contains SHA-1 hash of the whole file as well as ID of the representative
chunk (chosen to be the chunk with the minimal hash value) and pointer to the
bin stored on disk. Then similar files (the ones having the same representative
chunk ID) are grouped into bins stored on disks, which is the second tier index.
This eliminates duplicate files in RAM and duplicate chunks inside each bin.



Presidio [32] is a solution for archival storage that similarly to [11] combines
multiple deduplication (redundancy elimination) techniques: file-level deduplica-
tion, variable-length hash-based deduplication and delta encoding of files based
on similarity.

Another hybrid approach is described in [1]. Authors focus on improving
segmentation speed with hierarchical fingerprinting based on Merkle (hash) trees.
Technique is tweaked to archival workloads.

3.4 VM-specific Deduplication

Variable-length vs. fixed-length deduplication in virtualization environments is
inspected in [14]. Somewhat surprisingly, fixed-length chunking achieves better
results than variable-length chunking as well as being computationaly less ex-
pensive since there is no need for segment boundary detection (anchoring).

In [33], authors introduce Liquid, a deduplication file system designed for
large scale VM deployment. The approach uses fixed-sized chunking, with 4KB
chunks, which is the same as most OS file systems block sizes. The simplicity
of this approach and its efficiency on VM workloads outweigh variable-length
chunking.

4 Memory Data Deduplication

Deduplication is not only useful for disk data, but also for memory data. Not
much research (compared to disk data) has been done, most of which is focused
on virtualization environments, where memory deduplication is also known as
memory page sharing.

Nevertheless, authors of RAMcloud [26] argue that future storage systems
comprised of commodity servers should store data in RAM and not on disks,
which shoud only be used for backup. Authors claim that the role of disks must
become archival, because it is not possible to access information on disks often
enough due to discrepancy between capacity, transfer rate and seek times.

Disco [7] was a project developed to run IRIX OS on a shared-memory mul-
tiprocessor computer. Since an obvious problem of excess memory usage occurs
when multiple copies of an OS are run, authors developed transparent page shar-
ing (memory deduplication). The described approach requires modifications to
the guest OS system calls and is therefore application-specific.

Authors in [30] provided a different solution known as content-based page
sharing developed for the commercial VMware virtual machine monitor. Unlike
Disco, this approach does not require any modifications to the guest OS. This
approach is in essence an offline (batch) hash-based file-level deduplication where
files are memory pages. Several policies are used to control which pages are good
candidates and should be scanned, and how often should this be done.

A similar approach is used on Linux, where it is known as Kernel Samepage
Merging (KSM) [17]. It was developed as a part of the KVM virtual machine



monitor project. KSM also employs content-based page sharing but uses red-
black trees for storing deduplication information instead of hash tables, and a
simple 32-bit checksum. This is reportedly [19] due to patent issues with VMware
solution [30].

Authors of difference engine [13] apply a similar approach to the one found
in [16] to memory pages. They combine hash-based deduplication (often called
content-based page sharing in memory context) [30] with delta encoding through
resemblance detection [11], thus achieving sub-page-level deduplication.

Memory deduplication in virtual machine environments is not only beneficial
since it reduces memory consumption, but it can also save network bandwidth
when doing live migration of virtual machines. Technique described in [9] doest
just that.

Recently, introspection-based approaches were proposed. XLH (cross-layer
hints) approach [22] generates deduplication hints by monitoring guest’s access
to virtual disk images. Another similar approach is [8] which mostly deals with
an issue of efficiently inspecting guest memory.

5 Conclusion and Future Work

We reviewed the most important work in deduplication done in the last decade
along with some fundamentals. Most of the techniques in deduplication were
developed with backup/archival or virtualization workloads in mind. We no-
tice that work on memory data deduplication is scarce and mostly focused on
virtualization.

Our research will focus on the following issues not addressed so far:

— Deduplication (possibly inline) in RAM-based storage systems.

— Subpage-level memory deduplication. Existing systems only deduplicate whole
pages.

— Better understanding the effect of different storage APIs on deduplication.

Additionaly, we will investigate the possibility of improving existing techniques,
namely:

— Improvements to algorithms for segment boundary scanning and segment
indexing in hash-based deduplication.

— Improvements to algorithms for similarity-based deduplication.

— Better handling of inherent fragmentation in disk data deduplication.

— Better approach for distributed data deduplication. We will consider apply-
ing deduplication to distributed file systems with beter performance than
existing solutions.
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